Dynamic Properties of Expansive Soil-Rubber under Freeze-Thaw Cycles

被引:5
|
作者
Yang, Zhongnian [1 ]
Lu, Zhaochi [1 ]
Shi, Wei [1 ]
Wang, Chu [2 ]
Ling, Xianzhang [1 ]
Liu, Xiu [3 ]
Guan, Da [3 ]
Cheng, Zhaojie [1 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266000, Peoples R China
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[3] China Energy Baoshen Railway Grp Co Ltd, 1 Arding St, Baotou 014010, Peoples R China
基金
国家重点研发计划;
关键词
Waste rubber; Freeze-thaw (FT) cycle; Expansive soil; Dynamic shear modulus; Damping ratio; SHEAR-STRENGTH; DAMPING RATIO; BEHAVIOR; MODULUS; TIRES;
D O I
10.1061/(ASCE)MT.1943-5533.0004688
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Soils mixed with recycled waste rubbers have been widely used in geotechnical and geoenvironmental engineering. However, the research on rubber-soil mixtures in deep seasonally frozen regions is relatively lacking, so the application and dynamic properties of expansive soil-rubber (ESR) undergoing freeze-thaw (FT) cycles need further investigation. This study investigated the dynamic properties of ESR undergoing freeze-thaw cycles in terms of confining pressure and frequency using temperature-controlled dynamic triaxial tests. The results show that (1) shear stress and dynamic shear modulus with 5% and 10% rubber content (RC) are similar under freeze-thaw cycles, and both decrease and then increase with the number of cycles; (2) shear stress and dynamic shear modulus are positively correlated with confining pressure and frequency for the same number of cycles; (3) ESR damping ratio decreases with increasing shear strain, with a maximum reduction of 50.65%; (4) variations in ESR damping ratio under the influence of freeze-thaw cycles, confining pressure, and frequency are significant; and (5) ESR damping ratio is optimal when FT=12 and RC=10%, and is 29.76% higher than that of plain expansive soil.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fractal analysis of cracking in a clayey soil under freeze-thaw cycles
    Lu, Yang
    Liu, Sihong
    Weng, Liping
    Wang, Liujiang
    Li, Zhuo
    Xu, Lei
    ENGINEERING GEOLOGY, 2016, 208 : 93 - 99
  • [22] SHEAR MODULUS AND DAMPING RATIO OF CLAY SOIL UNDER REPEATED FREEZE-THAW CYCLES
    Roustaei, Mahya
    Hendry, Michael
    Aghaei, Eisa Ali
    Bayat, Meysam
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2021, 18 (01): : 71 - 81
  • [23] Effect of freeze-thaw cycles on shear strength of saline soil
    Han, Yan
    Wang, Qing
    Wang, Ning
    Wang, Jiaqi
    Zhang, Xudong
    Cheng, Shukai
    Kong, Yuanyuan
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2018, 154 : 42 - 53
  • [24] Mechanical Experiments and ABAQUS Simulations of Fiber-Coal Gangue Stabilized Expansive Soil Under Freeze-Thaw Cycles
    Zhang, Yan
    Jia, Xiupeng
    Wang, Minglei
    ADVANCES IN CIVIL ENGINEERING, 2024, 2024
  • [25] Mechanical Properties of Subgrade Soil Reinforced with Basalt Fiber and Cement under Freeze-Thaw Cycles
    Niu, Weiwei
    Liu, Jiankun
    Kravchenko, Ekaterina
    Zheng, Yuanyuan
    Tai, Bowen
    Wei, Pengchang
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (12)
  • [26] Effects on the micropore structure and unfrozen water content in expansive soil under freeze-thaw cycles via low-field NMR
    Yang, Zhongnian
    Lu, Zhaochi
    Shi, Wei
    Ling, Xianzhang
    Liu, Xiu
    Guan, Da
    Zhang, Jin
    GEOMECHANICS AND GEOENGINEERING-AN INTERNATIONAL JOURNAL, 2024, 19 (05): : 705 - 720
  • [27] Effect of freeze-thaw cycles on the dynamic parameters of modified Na+-bentonite by different cations
    Yang, Zhongnian
    Lu, Zhaochi
    Shi, Wei
    Cui, Yuxue
    Lv, Jianhang
    Ling, Xianzhang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2022, 81 (08)
  • [28] Freeze-thaw performance of a cement-treated expansive soil
    Lu, Yang
    Liu, Sihong
    Zhang, Yonggan
    Li, Zhuo
    Xu, Lei
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2020, 170
  • [29] Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles
    Wang, Dan
    Liu, En-long
    Yang, Cheng-song
    Liu, You-qian
    Zhu, Sheng-xian
    Yu, Qi-hao
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (01) : 242 - 255
  • [30] Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles
    Niu, Caoyuan
    Zhu, Zheming
    Zhou, Lei
    Li, Xiaohan
    Ying, Peng
    Dong, Yuqing
    Deng, Shuai
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2021, 191