Dynamic Properties of Expansive Soil-Rubber under Freeze-Thaw Cycles

被引:5
|
作者
Yang, Zhongnian [1 ]
Lu, Zhaochi [1 ]
Shi, Wei [1 ]
Wang, Chu [2 ]
Ling, Xianzhang [1 ]
Liu, Xiu [3 ]
Guan, Da [3 ]
Cheng, Zhaojie [1 ]
机构
[1] Qingdao Univ Technol, Sch Civil Engn, Qingdao 266000, Peoples R China
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[3] China Energy Baoshen Railway Grp Co Ltd, 1 Arding St, Baotou 014010, Peoples R China
基金
国家重点研发计划;
关键词
Waste rubber; Freeze-thaw (FT) cycle; Expansive soil; Dynamic shear modulus; Damping ratio; SHEAR-STRENGTH; DAMPING RATIO; BEHAVIOR; MODULUS; TIRES;
D O I
10.1061/(ASCE)MT.1943-5533.0004688
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Soils mixed with recycled waste rubbers have been widely used in geotechnical and geoenvironmental engineering. However, the research on rubber-soil mixtures in deep seasonally frozen regions is relatively lacking, so the application and dynamic properties of expansive soil-rubber (ESR) undergoing freeze-thaw (FT) cycles need further investigation. This study investigated the dynamic properties of ESR undergoing freeze-thaw cycles in terms of confining pressure and frequency using temperature-controlled dynamic triaxial tests. The results show that (1) shear stress and dynamic shear modulus with 5% and 10% rubber content (RC) are similar under freeze-thaw cycles, and both decrease and then increase with the number of cycles; (2) shear stress and dynamic shear modulus are positively correlated with confining pressure and frequency for the same number of cycles; (3) ESR damping ratio decreases with increasing shear strain, with a maximum reduction of 50.65%; (4) variations in ESR damping ratio under the influence of freeze-thaw cycles, confining pressure, and frequency are significant; and (5) ESR damping ratio is optimal when FT=12 and RC=10%, and is 29.76% higher than that of plain expansive soil.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Study on Properties of Expansive Soil Improved by Steel Slag Powder and Cement under Freeze-Thaw Cycles
    Wu, Yankai
    Qiao, Xiaolong
    Yu, Xinbao
    Yu, Jiali
    Deng, Yongfeng
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (02) : 417 - 428
  • [12] Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles
    Lu, Yang
    Liu, Sihong
    Alonso, Eduardo
    Wang, Liujiang
    Xu, Lei
    Li, Zhuo
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 157 : 206 - 214
  • [13] Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles
    Li B.
    Zhu Z.
    Li T.
    Baozha Yu Chongji/Explosion and Shock Waves, 2022, 42 (09):
  • [14] Effect of Freeze-Thaw Cycles on the Microstructure Characteristics of Unsaturated Expansive Soil
    Li, Xinyu
    Cong, Shengyi
    Tang, Liang
    Ling, Xianzhang
    SUSTAINABILITY, 2025, 17 (02)
  • [15] Investigation of rubber content and size on dynamic properties of expansive soil-rubber
    Yang, Z.
    Lu, Z.
    Shi, W.
    Wang, C.
    Ling, X.
    Li, J.
    Guan, D.
    GEOSYNTHETICS INTERNATIONAL, 2023, 31 (03) : 269 - 282
  • [16] The Evolution of the Dynamic Modulus of Fly Ash Soil under the Freeze-thaw Cycles
    Chen Jia-feng
    Li Li
    Wei Hai-bin
    Chang Ming-ming
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 748 - 751
  • [17] Deteriorating law of strength properties of expansive soil in climate marginal zone with freeze-thaw cycles
    Wang L.
    Wang Z.
    Fang W.
    Tian J.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2022, 53 (01): : 288 - 295
  • [18] Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles
    Orakoglu, Muge Elif
    Liu, Jiankun
    Niu, Fujun
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2017, 101 : 269 - 284
  • [19] Micro-scale investigations on the mechanical properties of expansive soil subjected to freeze-thaw cycles
    Chen, Qimin
    Ghimire, Bibek
    Su, Libin
    Liu, Yong
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 219
  • [20] An Experimental Study on the Compressive Dynamic Performance of Rubber Concrete under Freeze-Thaw Cycles
    Zhang, Juntao
    Zhang, Guangli
    Sun, Xinjian
    Pan, Wenguo
    Huang, Peijie
    Li, Zhanhai
    Zhang, Baoyun
    Zhou, Xinjie
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021