Primary mapping of quantitative trait loci regulating multivariate horticultural phenotypes of watermelon (Citrullus lanatus L.)

被引:5
|
作者
Amanullah, Sikandar [1 ,2 ]
Li, Shenglong [1 ,2 ]
Osae, Benjamin Agyei [1 ,2 ]
Yang, Tiantian [1 ,2 ]
Abbas, Farhat [3 ]
Gao, Meiling [4 ]
Wang, Xuezheng [1 ,2 ]
Liu, Hongyu [1 ,2 ]
Gao, Peng [1 ,2 ]
Luan, Feishi [1 ,2 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Harbin, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Biol & Genet Improvement Hort Crops Northe, Harbin, Peoples R China
[3] South China Agr Univ, Coll Hort, Guangzhou, Peoples R China
[4] Qiqihar Univ, Coll Life Sci Agr & Forestry, Qiqihar, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 13卷
关键词
watermelon (Citrullus lanatus L; ovary; fruit; seed; genetic markers; QTL; GENETIC-LINKAGE MAP; SEED OIL PERCENTAGE; FLESH COLOR; FRUIT-DEVELOPMENT; QTL ANALYSIS; QUALITATIVE INHERITANCE; THUNB; MATSUM; STRIPE PATTERN; CANARY YELLOW; RIND PATTERN;
D O I
10.3389/fpls.2022.1034952
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Watermelon fruits exhibit a remarkable diversity of important horticultural phenotypes. In this study, we initiated a primary quantitative trait loci (QTL) mapping to identify the candidate regions controlling the ovary, fruit, and seed phenotypes. Whole genome sequencing (WGS) was carried out for two differentiated watermelon lines, and 350 Mb (96%) and 354 Mb (97%) of re-sequenced reads covered the reference de novo genome assembly, individually. A total of 45.53% non-synonymous single nucleotide polymorphism (nsSNPs) and 54.47% synonymous SNPs (sSNPs) were spotted, which produced 210 sets of novel SNP-based cleaved amplified polymorphism sequence (CAPS) markers by depicting 46.25% co-dominant polymorphism among parent lines and offspring. A biparental F-2:3 mapping population comprised of 100 families was used for trait phenotyping and CAPS genotyping, respectively. The constructed genetic map spanned a total of 2,398.40 centimorgans (cM) in length and averaged 11.42 cM, with 95.99% genome collinearity. A total of 33 QTLs were identified at different genetic positions across the eight chromosomes of watermelon (Chr-01, Chr-02, Chr-04, Chr-05, Chr-06, Chr-07, Chr-10, and Chr-11); among them, eight QTLs of the ovary, sixteen QTLs of the fruit, and nine QTLs of the seed related phenotypes were classified with 5.32-25.99% phenotypic variance explained (PVE). However, twenty-four QTLs were identified as major-effect and nine QTLs were mapped as minor-effect QTLs across the flanking regions of CAPS markers. Some QTLs were exhibited as tightly localized across the nearby genetic regions and explained the pleiotropic effects of multigenic nature. The flanking QTL markers also depicted significant allele specific contributions and accountable genes were predicted for respective traits. Gene Ontology (GO) functional enrichment was categorized in molecular function (MF), cellular components (CC), and biological process (BP); however, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were classified into three main classes of metabolism, genetic information processing, and brite hierarchies. The principal component analysis (PCA) of multivariate phenotypes widely demonstrated the major variability, consistent with the identified QTL regions. In short, we assumed that our identified QTL regions provide valuable genetic insights regarding the watermelon phenotypes and fine genetic mapping could be used to confirm them.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Molecular genetic mapping of quantitative trait loci for milling quality in rice (Oryza sativa L.)
    Dong, YJ
    Tsuzuki, E
    Lin, DZ
    Kamiunten, H
    Terao, H
    Matsuo, M
    Cheng, SH
    JOURNAL OF CEREAL SCIENCE, 2004, 40 (02) : 109 - 114
  • [42] Mapping of Quantitative Trait Loci for Butter Content and Hardness in Cocoa Beans (Theobroma cacao L.)
    Ioná S. Araújo
    Gonçalo A. de Souza Filho
    Messias G. Pereira
    Fábio G. Faleiro
    Vagner T. de Queiroz
    Cláudia T. Guimarães
    Maurílio A. Moreira
    Everaldo G. de Barros
    Regina C. R. Machado
    José L. Pires
    Raymond Schenell
    Uilson V. Lopes
    Plant Molecular Biology Reporter, 2009, 27 : 177 - 183
  • [43] Genetic mapping of quantitative trait loci for the stigma exsertion rate in rice (Oryza sativa L.)
    Rahman, Md Habibur
    Zhang Ying-xin
    Sun Lien-ping
    Zhang Ke-qin
    Rahman, Md Sazzadur
    Wu Wei-xun
    Zhan Xiao-deng
    Cao Li-yong
    Cheng Shi-hua
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (07) : 1423 - 1431
  • [44] Quantitative Trait Loci Mapping and Association Analysis of Solanesol Content in Tobacco (Nicotiana tabacum L.)
    Liu, Jing
    Xiang, Dehu
    Du, Yongmei
    Zhang, Zhongfeng
    Zhang, Hongbo
    Cheng, Lirui
    Fu, Qiujuan
    Yan, Ning
    Ju, Fuzhu
    Qi, Chaofan
    Lei, Yunkang
    Wang, Jun
    Liu, Yanhua
    AGRONOMY-BASEL, 2024, 14 (07):
  • [45] Mapping of quantitative trait loci for resistance to turcicum leaf blight in maize (Zea mays L.)
    Jakhar, Dan Singh
    Singh, Rajesh
    Devesh, Pavan
    Kumar, Saket
    Singh, Abhishek
    Srivastava, Ram Prakash
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2022, 34 (04): : 260 - 267
  • [46] Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.)
    Ren, Yi
    Jiao, Di
    Gong, Guoyi
    Zhang, Haiying
    Guo, Shaogui
    Zhang, Jie
    Xu, Yong
    MOLECULAR BREEDING, 2015, 35 (09)
  • [47] Quantitative trait loci mapping of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek
    Chankaew, Sompong
    Somta, Prakit
    Sorajjapinun, Worawit
    Srinives, Peerasak
    MOLECULAR BREEDING, 2011, 28 (02) : 255 - 264
  • [48] Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.)
    Xu, Yu
    Li, He-Nan
    Li, Guang-Jun
    Wang, Xia
    Cheng, Li-Guo
    Zhang, Yuan-Ming
    THEORETICAL AND APPLIED GENETICS, 2011, 122 (03) : 581 - 594
  • [49] Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.)
    Börner, A
    Schumann, E
    Fürste, A
    Cöster, H
    Leithold, B
    Röder, MS
    Weber, WE
    THEORETICAL AND APPLIED GENETICS, 2002, 105 (6-7) : 921 - 936
  • [50] Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L.
    F. Taguchi-Shiobara
    S. Y. Lin
    K. Tanno
    T. Komatsuda
    M. Yano
    T. Sasaki
    S. Oka
    Theoretical and Applied Genetics, 1997, 95 : 828 - 833