Besov Spaces with General Weights

被引:2
|
作者
Drihem, Douadi [1 ]
机构
[1] Msila Univ, Dept Math, Lab Funct Anal & Geometry Spaces, POB 166, Msila 28000, Algeria
关键词
Besov space; embedding; atom; molecule; wavelet; Muckenhoupt class; differences; TRIEBEL-LIZORKIN SPACES; VARIABLE SMOOTHNESS; NORM INEQUALITIES; DECOMPOSITION; LIPSCHITZ;
D O I
10.4208/jms.v56n1.23.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce Besov spaces with general smoothness. These spaces unify and generalize the classical Besov spaces. We establish the phi-transform characteriza-tion of these spaces in the sense of Frazier and Jawerth and we prove their Sobolev embeddings. We establish the smooth atomic, molecular and wavelet decomposition of these function spaces. A characterization of these function spaces in terms of the difference relations is given.
引用
收藏
页码:18 / 92
页数:75
相关论文
共 50 条
  • [21] On the composition operators on Besov and Triebel-Lizorkin spaces with power weights
    Drihem, Douadi
    ANNALES POLONICI MATHEMATICI, 2022, : 117 - 137
  • [22] Besov and Hardy Spaces Associated with the Schrodinger Operator on the Heisenberg Group
    Gong, Ruming
    Li, Ji
    Song, Liang
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 144 - 168
  • [23] Wavelet characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and its applications
    He, Ziyi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 54 (54) : 176 - 226
  • [24] Real-variable characterizations and their applications of matrix-weighted Besov spaces on spaces of homogeneous type
    Bu, Fan
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (01)
  • [25] Variable Besov Spaces Associated with Heat Kernels
    Zhuo, Ciqiang
    Yang, Dachun
    CONSTRUCTIVE APPROXIMATION, 2020, 52 (03) : 479 - 523
  • [26] ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) : 111 - 138
  • [27] Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces
    Dachun Yang
    Wen Yuan
    Ciqiang Zhuo
    Revista Matemática Complutense, 2014, 27 : 93 - 157
  • [28] Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces and their applications
    Yuan, Wen
    Sawano, Yoshihiro
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 736 - 757
  • [29] Characterizations of anisotropic Besov spaces
    Barrios, B.
    Betancor, J. J.
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) : 1796 - 1819
  • [30] On Dilation Operators in Besov Spaces
    Schneider, Cornelia
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 111 - 128