A Self-Powered Flow Velocity Sensing System Based on Hybrid Piezo-Triboelectric Nanogenerator

被引:9
|
作者
Ge, Chengpeng [2 ]
Ma, Jijie [1 ,2 ]
Hu, Yili [1 ,2 ]
Li, Jianping [1 ,2 ]
Zhang, Yu [2 ]
He, Xinsheng [2 ]
Cheng, Tinghai [3 ]
Wen, Jianming [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Inst Precis Machinery & Smart Struct, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Operat & Maintenance Technol &, Jinhua 321004, Peoples R China
[3] Beijing Inst Nanoenergy & Nanosyst, Chinese Acad Sci, Beijing 101400, Peoples R China
关键词
piezo-triboelectric nanogenerator; galloping; self-powered; flow velocity monitoring; ENERGY; FORCE; FIELD;
D O I
10.1002/admt.202201296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monitoring the flow velocity of an urban ventilation system has great significance for air circulation and air quality. In this study, a self-powered flow velocity sensor based on hybrid piezo-triboelectric nanogenerator (P-TENG) is proposed. The flow velocity is detected by a triboelectric nanogenerator (TENG) working in freestanding triboelectric-layer mode. A polyvinylidene difluoride (PVDF) fixed on the galloping beam converts the kinetic energy of the moving air into electricity. Both the TENG and PVDF are driven by the galloping vibration of a bluff body arisen from the air flow of ventilation. The structure of the P-TENG is provided and a prototype is fabricated. The experiments indicate that the PVDF can generate 2.4 mu W of energy across an external resistance of 60 M omega. Flow velocity ranging from 4 to 10 m s(-1) can be well detected by the proposed nanogenerator. Moreover, the P-TENG is applicable to a critical environment with humidity up to 75%. Demonstration is carried out on a wind tunnel, illustrating good reliability as the frequency remains stable for the whole duration. Compared with the commercial anemometer, the error rate is under 1% after calibration. The proposed P-TENG promises in low cost, self-powered flow velocity monitoring in urban ventilation systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing
    Zhang, Ping
    Deng, Lu
    Zhang, Honghao
    Li, Pengfei
    Zhang, Weikang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [42] Mechanically Active Transducing Element Based on Solid–Liquid Triboelectric Nanogenerator for Self-Powered Sensing
    Cong Phat Vo
    M. Shahriar
    Chau Duy Le
    Kyoung Kwan Ahn
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6 : 741 - 749
  • [43] Stretchable and Wearable Triboelectric Nanogenerator Based on Kinesio Tape for Self-Powered Human Motion Sensing
    Wang, Shutang
    He, Minghui
    Weng, Bingjuan
    Gan, Lihui
    Zhao, Yingru
    Li, Ning
    Xie, Yannan
    NANOMATERIALS, 2018, 8 (09)
  • [44] Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors
    Hao, Saifei
    Jiao, Jingyi
    Chen, Yandong
    Wang, Zhong Lin
    Cao, Xia
    NANO ENERGY, 2020, 75
  • [45] Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing
    Wang, Jie
    Zhang, Hulin
    Xie, Yuhang
    Yan, Zhuocheng
    Yuan, Ying
    Huang, Long
    Cui, Xiaojing
    Gao, Min
    Su, Yuanjie
    Yang, Weiqing
    Lin, Yuan
    NANO ENERGY, 2017, 33 : 418 - 426
  • [46] A Triboelectric Nanogenerator as a Self-Powered Sensor for a Soft-Rigid Hybrid Actuator
    Chen, Jian
    Chen, Baodong
    Han, Kai
    Tang, Wei
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (09)
  • [47] Self-Powered Sterilization System for Wearable Devices Based on Biocompatible Materials and Triboelectric Nanogenerator
    Lei, Danni
    Wu, Junpeng
    Zi, Yunlong
    Pan, Caofeng
    Cui, Hongzhi
    Li, Xiaoyi
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (05) : 2819 - 2828
  • [48] Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator
    Liu, Guoxu
    Nie, Jinhui
    Han, Changbao
    Jiang, Tao
    Yang, Zhiwei
    Pang, Yaokun
    Xu, Liang
    Guo, Tong
    Bu, Tianzhao
    Zhang, Chi
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 7126 - 7133
  • [49] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [50] Self-powered silicon PIN neutron detector based on triboelectric nanogenerator
    Zhu, Zhiyuan
    Li, Bao
    Zhao, En
    Yu, Min
    NANO ENERGY, 2022, 102