A Self-Powered Flow Velocity Sensing System Based on Hybrid Piezo-Triboelectric Nanogenerator

被引:9
|
作者
Ge, Chengpeng [2 ]
Ma, Jijie [1 ,2 ]
Hu, Yili [1 ,2 ]
Li, Jianping [1 ,2 ]
Zhang, Yu [2 ]
He, Xinsheng [2 ]
Cheng, Tinghai [3 ]
Wen, Jianming [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Inst Precis Machinery & Smart Struct, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Operat & Maintenance Technol &, Jinhua 321004, Peoples R China
[3] Beijing Inst Nanoenergy & Nanosyst, Chinese Acad Sci, Beijing 101400, Peoples R China
关键词
piezo-triboelectric nanogenerator; galloping; self-powered; flow velocity monitoring; ENERGY; FORCE; FIELD;
D O I
10.1002/admt.202201296
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monitoring the flow velocity of an urban ventilation system has great significance for air circulation and air quality. In this study, a self-powered flow velocity sensor based on hybrid piezo-triboelectric nanogenerator (P-TENG) is proposed. The flow velocity is detected by a triboelectric nanogenerator (TENG) working in freestanding triboelectric-layer mode. A polyvinylidene difluoride (PVDF) fixed on the galloping beam converts the kinetic energy of the moving air into electricity. Both the TENG and PVDF are driven by the galloping vibration of a bluff body arisen from the air flow of ventilation. The structure of the P-TENG is provided and a prototype is fabricated. The experiments indicate that the PVDF can generate 2.4 mu W of energy across an external resistance of 60 M omega. Flow velocity ranging from 4 to 10 m s(-1) can be well detected by the proposed nanogenerator. Moreover, the P-TENG is applicable to a critical environment with humidity up to 75%. Demonstration is carried out on a wind tunnel, illustrating good reliability as the frequency remains stable for the whole duration. Compared with the commercial anemometer, the error rate is under 1% after calibration. The proposed P-TENG promises in low cost, self-powered flow velocity monitoring in urban ventilation systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-Powered Hybrid Motion and Health Sensing System Based on Triboelectric Nanogenerators
    Zhang, Maoqin
    Yan, Wei
    Ma, Weiting
    Deng, Yuheng
    Song, Weixing
    SMALL, 2024,
  • [22] Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
    Zhou, Jian
    Tao, Ye
    Liu, Weiyu
    Sun, Haizhen
    Wu, Wenlong
    Song, Chunlei
    Xue, Rui
    Jiang, Tianyi
    Jiang, Hongyuan
    Ren, Yukun
    NANO ENERGY, 2021, 89
  • [23] Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator
    Yang, Ya
    Lin, Long
    Zhang, Yue
    Jing, Qingshen
    Hou, Te-Chien
    Wang, Zhong Lin
    ACS NANO, 2012, 6 (11) : 10378 - 10383
  • [24] Self-powered pressure sensors based on triboelectric nanogenerator
    Xu, Mengfei
    Tao, Kai
    Chen, Zhensheng
    Chen, Hao
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3498 - 3501
  • [25] Triboelectric Nanogenerator Based Self-Powered Tilt Sensor
    Iqbal, Faisal
    Shafi, Muhammad
    Khattak, Muhammad Irfan
    Nawaz, Aamir
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (02): : 325 - 328
  • [26] Self-Powered Humidity Sensor based on Triboelectric Nanogenerator
    Su, Yuanjie
    Xie, Guangzhong
    Wang, Si
    Tai, Huiling
    Zhang, Qiuping
    Du, Hongfei
    Du, Xiaosong
    Jiang, Yadong
    2017 IEEE SENSORS, 2017, : 1212 - 1214
  • [27] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [28] Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
    Chen, Jun
    Wang, Zhong Lin
    JOULE, 2017, 1 (03) : 480 - 521
  • [29] Triboelectric nanogenerator-enabled self-powered strategies for sensing applications
    Qu, Xiaolin
    Liu, Xiaoshi
    Yue, Yuyan
    Tang, Yuguo
    Miao, Peng
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2025, 185
  • [30] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85