Non-uniform Continuity of the Generalized Camassa-Holm Equation in Besov Spaces

被引:3
|
作者
Li, Jinlu [1 ]
Wu, Xing [2 ]
Zhu, Weipeng [3 ]
Guo, Jiayu [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Camassa-Holm equation; Non-uniform continuous dependence; Besov spaces; WELL-POSEDNESS; CAUCHY-PROBLEM; ILL-POSEDNESS; INITIAL DATA; DEPENDENCE; ANALYTICITY;
D O I
10.1007/s00332-022-09866-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the generalized Camassa-Holm equation proposed by Hakkaev and Kirchev (Commun Partial Differ Equ 30:761-781, 2005). We prove that the solution map of the generalized Camassa-Holm equation is not uniformly continuous on the initial data in Besov spaces. Our result includes the present work Li et al. (Differ Equ 269:8686-8700, 2020) on Camassa-Holm equation with Q = 1 and extends the previous non-uniform continuity in Sobolev spaces Mi and Mu (Monatsh Math 176:423-457, 2015) to Besov spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [42] THE EXISTENCE OF WEAK SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Lai, Shaoyong
    Xie, Qichang
    Guo, Yunxi
    Wu, YongHong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 45 - 57
  • [43] THE GLOBAL CONSERVATIVE SOLUTIONS FOR THE GENERALIZED CAMASSA-HOLM EQUATION
    Yang, Li
    Mu, Chunlai
    Zhou, Shouming
    Tu, Xinyu
    ELECTRONIC RESEARCH ARCHIVE, 2019, 27 : 37 - 67
  • [44] On the initial value problem for the two-coupled Camassa-Holm system in Besov spaces
    Wang, Haiquan
    Chong, Gezi
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 479 - 505
  • [45] Non-uniform dependence and persistence properties for coupled Camassa-Holm equations
    Zhou, Shouming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3718 - 3732
  • [46] Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces
    Jinlu Li
    Yanghai Yu
    Weipeng Zhu
    Journal of Evolution Equations, 2022, 22
  • [47] Blow-up solution and analyticity to a generalized Camassa-Holm equation
    Wang, Ying
    Guo, Yunxi
    AIMS MATHEMATICS, 2023, 8 (05): : 10728 - 10744
  • [48] THE CAUCHY PROBLEM FOR AN INTEGRABLE GENERALIZED CAMASSA-HOLM EQUATION WITH CUBIC NONLINEARITY
    Liu, Bin
    Zhang, Lei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 267 - 296
  • [49] GLOBAL CONSERVATIVE AND DISSIPATIVE SOLUTIONS OF THE GENERALIZED CAMASSA-HOLM EQUATION
    Zhou, Shouming
    Mu, Chunlai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1713 - 1739
  • [50] ON A THREE-COMPONENT CAMASSA-HOLM EQUATION WITH PEAKONS
    Mi, Yongsheng
    Mu, Chunlai
    KINETIC AND RELATED MODELS, 2014, 7 (02) : 305 - 339