Non-uniform Continuity of the Generalized Camassa-Holm Equation in Besov Spaces

被引:3
|
作者
Li, Jinlu [1 ]
Wu, Xing [2 ]
Zhu, Weipeng [3 ]
Guo, Jiayu [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Camassa-Holm equation; Non-uniform continuous dependence; Besov spaces; WELL-POSEDNESS; CAUCHY-PROBLEM; ILL-POSEDNESS; INITIAL DATA; DEPENDENCE; ANALYTICITY;
D O I
10.1007/s00332-022-09866-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the generalized Camassa-Holm equation proposed by Hakkaev and Kirchev (Commun Partial Differ Equ 30:761-781, 2005). We prove that the solution map of the generalized Camassa-Holm equation is not uniformly continuous on the initial data in Besov spaces. Our result includes the present work Li et al. (Differ Equ 269:8686-8700, 2020) on Camassa-Holm equation with Q = 1 and extends the previous non-uniform continuity in Sobolev spaces Mi and Mu (Monatsh Math 176:423-457, 2015) to Besov spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Non-uniform dependence for the periodic higher dimensional Camassa-Holm equations
    Zhao, Yongye
    Yang, Meiling
    Li, Yongsheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 59 - 73
  • [32] On the Cauchy problem for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Mu, Chunlai
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (03): : 423 - 457
  • [33] Non-uniform Dependence for the Novikov Equation in Besov Spaces
    Li, Jinlu
    Li, Min
    Zhu, Weipeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [34] A Note on the Generalized Camassa-Holm Equation
    Wu, Yun
    Zhao, Ping
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [35] Non-uniform continuity of the solution map to the rotation-two-component Camassa-Holm system
    Yang, Hui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4423 - 4463
  • [36] Non-uniform continuity of the Fokas–Olver–Rosenau–Qiao equation in Besov spaces
    Xing Wu
    Yanghai Yu
    Monatshefte für Mathematik, 2022, 197 : 381 - 394
  • [37] The local well-posedness in Besov spaces and non-uniform dependence on initial data for the interacting system of Camassa-Holm and Degasperis-Procesi equations
    Zhou, Shouming
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 735 - 764
  • [38] Global weak solutions for a generalized Camassa-Holm equation
    Tu, Xi
    Yin, Zhaoyang
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (16) : 2457 - 2475
  • [39] Lower order regularity for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2017, 96 (07) : 1126 - 1137
  • [40] Existence and nonexistence of solutions for the generalized Camassa-Holm equation
    Pan Xiujuan
    Kang, Shin Min
    Kwun, Young Chel
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,