Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning

被引:32
|
作者
Cui, Junguo [1 ,2 ]
Wu, Lei [1 ,2 ,3 ]
Huang, Xiaodong [1 ,2 ]
Xu, Dengpan [1 ,2 ]
Liu, Chao [1 ,2 ]
Xiao, Wensheng [2 ]
机构
[1] China Univ Petr East China, Coll Mech & Elect Engn, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Natl Engn Res Ctr Marine Geophys Prospecting & Exp, Qingdao 266580, Peoples R China
[3] Nanyang Technol Univ, Maritime Inst NTU, Sch Civil & Environm Engn, Singapore 639798, Singapore
基金
国家重点研发计划;
关键词
Path planning; Ant colony optimization algorithm; Directional mechanism; Adaptive updating; SYSTEM;
D O I
10.1016/j.knosys.2024.111459
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a widely used path planning algorithm, the ant colony optimization algorithm (ACO) has evolved into a welldeveloped method within the realm of optimization algorithms and has been extensively applied across various fields. In this study, a multi-strategy adaptable ant colony optimization (MsAACO) is proposed to alleviate the insufficient and inefficient convergence of ACO, employing four-design improvements. First, a directionguidance mechanism is proposed to improve the performance of node selection. Second, an adaptive heuristic function is introduced to decrease the length and number of turns of the optimal path solutions. Moreover, the deterministic state transition probability rule was employed to promote the convergence speed of ACO. Finally, nonuniform pheromone initialization was utilized to enhance the ability of ACO to select advantageous regions. Subsequently, the major parameters of the strategies were optimized and their effectiveness was validated. MsAACO was proposed by combining these four strategies with ACO. To verify the advantages of MsAACO, five representative environment models were employed, and comprehensive experiments were conducted by comparing them with existing approaches, including the A* algorithm, variants of ACO, Dijkstra's algorithm, jump point search algorithm, best-first search, breadth-first search, trace algorithm, and other excellent algorithms. The experimental statistical results demonstrate that MsAACO can efficiently generate smoother optimal path-planning solutions with lower length and turn times and improve the convergence efficiency and stability of ACO compared to other algorithms. The generated results of MsAACO verified its superiority in solving the pathplanning problem of mobile robots.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Ant colony algorithm with Stackelberg game and multi-strategy fusion
    Chen, Da
    You, XiaoMing
    Liu, Sheng
    APPLIED INTELLIGENCE, 2022, 52 (06) : 6552 - 6574
  • [42] Ant Colony Optimization algorithm for UAV path planning
    Konatowski, Stanislaw
    Pawlowski, Piotr
    2018 14TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET), 2018, : 177 - 182
  • [43] Path planning for coal mine robot via improved ant colony optimization algorithm
    Song, Baoye
    Miao, Huimin
    Xu, Lin
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 283 - 289
  • [44] Multi-factor of path planning based on an ant colony optimization algorithm
    Wang, Mingchang
    Zhu, Chunyu
    Wang, Fengyan
    Li, Tingting
    Zhang, Xinyue
    ANNALS OF GIS, 2020, 26 (02) : 101 - 112
  • [45] Path Planning of Mobile Robot Based on Dynamic Chaotic Ant Colony Optimization Algorithm
    Li, Xiaoting
    Huang, Tingpei
    Chen, Haihua
    Zhang, Yucheng
    Xu, Luo
    Liu, Yingying
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 515 - 519
  • [46] Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm
    Miao, Changwei
    Chen, Guangzhu
    Yan, Chengliang
    Wu, Yuanyuan
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 156
  • [47] Mobile Robot Path Planning in Complex Environments Using Ant Colony Optimization Algorithm
    Uriol, Ronald
    Moran, Antonio
    2017 3RD INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2017, : 15 - 21
  • [48] A Path Planning Strategy with Ant Colony Algorithm for Series Connected Batteries
    Chen, Yang
    Shen, Teng
    Yang, Shiyan
    Liu, Xiaofang
    Yang, Ru
    Cheng, Lefeng
    ELECTRONICS, 2020, 9 (11) : 1 - 13
  • [49] Robot path planning based on improved ant colony algorithm
    Xue, Yang
    Chen, Yuefan
    Ding, Zilong
    Huang, Xincao
    Xi, Dongxiang
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 129 - 133
  • [50] Robot Path Planning Based on Improved Ant Colony Optimization
    Huangfu Shuyun
    Tang Shoufeng
    Song Bin
    Tong Minming
    Ji Mingyu
    2018 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2018), 2018, : 25 - 28