A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction

被引:4
|
作者
Cao, Shuqin
Wu, Libing [1 ,2 ,3 ]
Zhang, Rui [4 ]
Wu, Dan [5 ]
Cui, Jianqun [6 ]
Chang, Yanan [6 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[3] Guangdong Lab Artificial Intelligence & Digital E, Guangzhou 510335, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R China
[5] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
[6] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Correlation; Roads; Spatiotemporal phenomena; Feature extraction; Convolutional neural networks; Predictive models; Adaptive systems; Traffic prediction; spatiotemporal correlations; multiscale graph; graph convolutional networks; cross-scale fusion;
D O I
10.1109/TITS.2024.3354802
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic prediction is vital to traffic planning, control, and optimization, which is necessary for intelligent traffic management. Existing methods mostly capture spatiotemporal correlations on a fine-grained traffic graph, which cannot make full use of cluster information in coarse-grained traffic graph. However, the flow variation of clusters in the coarse-grained traffic graph is more stable compared with nodes in the fine-grained traffic graph. And the flow variation of a fine-grained node is generally consistent with the trend of the cluster to which the node belongs. Thus information in the coarse-grained traffic graph can guide feature learning in the fine-grained traffic graph. To this end, we propose a Spatiotemporal Multiscale Graph Convolutional Network (SMGCN) that explores spatiotemporal correlations on a multiscale graph. Specifically, given a fine-grained traffic graph, we first generate a coarse-grained traffic graph by graph clustering, and extract spatiotemporal correlations on both fine-grained and coarse-grained traffic graphs. Then we propose a cross-scale fusion (CF) to implement information diffusion between the fine-grained and coarse-grained traffic graphs. Moreover, we employ an adaptive dynamic graph convolution network to mine both static and dynamic spatial features. We evaluate SMGCN on real-world datasets and obtain a 1.18% - 3.32% improvement over state-of-the-arts.
引用
收藏
页码:8705 / 8718
页数:14
相关论文
共 50 条
  • [21] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    Applied Intelligence, 2023, 53 : 17809 - 17823
  • [22] Bayesian graph convolutional network for traffic prediction
    Fu, Jun
    Zhou, Wei
    Chen, Zhibo
    NEUROCOMPUTING, 2024, 582
  • [23] Spatiotemporal graph convolutional recurrent networks for traffic matrix prediction
    Zhao, Jianlong
    Qu, Hua
    Zhao, Jihong
    Dai, Huijun
    Jiang, Dingchao
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (11):
  • [24] Spatiotemporal Data Fusion in Graph Convolutional Networks for Traffic Prediction
    Zhao, Baoxin
    Gao, Xitong
    Liu, Jianqi
    Zhao, Juanjuan
    Xu, Chengzhong
    IEEE ACCESS, 2020, 8 : 76632 - 76641
  • [25] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Liu, Tianbo
    Zhang, Jindong
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (14): : 15245 - 15269
  • [26] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [27] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Yuguang Chen
    Jintao Huang
    Hongbin Xu
    Jincheng Guo
    Linyong Su
    Scientific Reports, 13
  • [28] An adaptive traffic flow prediction model based on spatiotemporal graph neural network
    Tianbo Liu
    Jindong Zhang
    The Journal of Supercomputing, 2023, 79 : 15245 - 15269
  • [29] Spatiotemporal dynamic graph convolutional network for traffic speed forecasting
    Yin, Xiang
    Zhang, Wenyu
    Zhang, Shuai
    INFORMATION SCIENCES, 2023, 641
  • [30] ST-DAGCN: A spatiotemporal dual adaptive graph convolutional network model for traffic prediction
    Liu, Yutian
    Feng, Tao
    Rasouli, Soora
    Wong, Melvin
    NEUROCOMPUTING, 2024, 601