LIMIT SETS OF UNFOLDING PATHS IN OUTER SPACE

被引:0
作者
Bestvina, Mladen [1 ]
Gupta, Radhika [2 ]
Tao, Jing [3 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
[3] Univ Oklahoma, Dept Math, Norman, OK USA
基金
美国国家科学基金会;
关键词
free groups automorphisms; Outer space; ergodicity; groups acting on trees; IRREDUCIBLE AUTOMORPHISMS; LAMINATIONS; TREES; BOUNDARY; COMPLEX; ERGODICITY; GEODESICS; DYNAMICS; OUT(F-N); CURRENTS;
D O I
10.1017/S1474748023000488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$ -tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
引用
收藏
页码:2365 / 2403
页数:39
相关论文
共 50 条
  • [21] Asymmetry of Outer space
    Yael Algom-Kfir
    Mladen Bestvina
    Geometriae Dedicata, 2012, 156 : 81 - 92
  • [22] Asymmetry of Outer space
    Algom-Kfir, Yael
    Bestvina, Mladen
    GEOMETRIAE DEDICATA, 2012, 156 (01) : 81 - 92
  • [23] PATTERSON-SULLIVAN CURRENTS, GENERIC STRETCHING FACTORS AND THE ASYMMETRIC LIPSCHITZ METRIC FOR OUTER SPACE
    Kapovich, Ilya
    Lustig, Martin
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (02) : 371 - 398
  • [24] OUTER SPACE AND CYBERSPACE: AN OUTLINE OF WHERE AND HOW TO THINK OF OUTER SPACE IN VIDEO GAMES
    Majsova, Natalija
    TEORIJA IN PRAKSA, 2014, 51 (01): : 106 - 122
  • [25] Fatou components with punctured limit sets
    Boc-Thaler, Luka
    Fornaess, John Erik
    Peters, Han
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1380 - 1393
  • [26] On Limit Sets of Monotone Maps on Dendroids
    Makhrova, E. N.
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) : 311 - 316
  • [27] Limit sets of typical continuous functions
    Bernardes, Nilson C., Jr.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) : 651 - 659
  • [28] Lone axes in outer space
    Mosher, Lee
    Pfaff, Catherine
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (06): : 3385 - 3418
  • [29] The metric completion of Outer Space
    Yael Algom-Kfir
    Geometriae Dedicata, 2020, 204 : 191 - 230
  • [30] The metric completion of Outer Space
    Algom-Kfir, Yael
    GEOMETRIAE DEDICATA, 2020, 204 (01) : 191 - 230