Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models

被引:6
|
作者
Li, Lu [1 ,2 ,3 ]
Dai, Yongjiu [1 ,2 ,3 ]
Wei, Zhongwang [1 ,2 ,3 ]
Wei, Shangguan [1 ,2 ,3 ]
Wei, Nan [1 ,2 ,3 ]
Zhang, Yonggen [4 ]
Li, Qingliang [5 ]
Li, Xian-Xiang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510275, Peoples R China
[3] Guangdong Prov Key Lab Climate Change & Nat Disast, Guangzhou 510275, Peoples R China
[4] Tianjin Univ, Inst Surface Earth Syst Sci, Sch Earth Syst Sci, Tianjin 300072, Peoples R China
[5] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130123, Peoples R China
关键词
soil moisture forecasting; hybrid model; deep learning; ConvLSTM; attention mechanism; IN-SITU; SURFACE; INDEX; SATELLITE;
D O I
10.1007/s00376-023-3181-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurate soil moisture (SM) prediction is critical for understanding hydrological processes. Physics-based (PB) models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes. In addition to PB models, deep learning (DL) models have been widely used in SM predictions recently. However, few pure DL models have notably high success rates due to lacking physical information. Thus, we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions. To this end, we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale (attention model). We further built an ensemble model that combined the advantages of different hybrid schemes (ensemble model). We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory (ConvLSTM) model for 1-16 days of SM predictions. The performances of the proposed hybrid models were investigated and compared with two existing hybrid models. The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models. Moreover, the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions. It is highlighted that the ensemble model outperformed the pure DL model over 79.5% of in situ stations for 16-day predictions. These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
引用
收藏
页码:1326 / 1341
页数:16
相关论文
共 50 条
  • [41] Comparative Analysis of Deep Learning Models in Stock Market Forecasting
    Zhu, Yangyue
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 77 - 81
  • [42] A novel forecasting strategy for improving the performance of deep learning models
    Livieris, Ioannis E.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [43] Deep learning models for forecasting aviation demand time series
    Kanavos, Andreas
    Kounelis, Fotios
    Iliadis, Lazaros
    Makris, Christos
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23) : 16329 - 16343
  • [44] A Deep Learning Models for Blind Guidance by Integrating CNN and ELM
    Tsai, Hsin-Yi
    Zhang, Hanyu
    Hung, Che-Lun
    Hsu, Fang-Rong
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 1229 - 1234
  • [45] Sensitive Information Detection Based on Deep Learning Models
    Zhang, Ruotong
    Zhu, Dingju
    Wu, Chao
    Xu, Jianyu
    Wu, Chun Ho
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [46] Integrating explainability into deep learning-based models for white blood cells classification
    Bhatia, Kunal
    Dhalla, Sabrina
    Mittal, Ajay
    Gupta, Savita
    Gupta, Aastha
    Jindal, Alka
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [47] Ensemble multifeatured deep learning models for air quality forecasting
    Lin, Chi-Yeh
    Chang, Yue-Shan
    Abimannan, Satheesh
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (05)
  • [48] Deep learning models for solar irradiance forecasting: A comprehensive review
    Kumari, Pratima
    Toshniwal, Durga
    JOURNAL OF CLEANER PRODUCTION, 2021, 318
  • [49] Residential energy consumption forecasting using deep learning models
    Ramos, Paulo Vitor B.
    Villela, Saulo Moraes
    Silva, Walquiria N.
    Dias, Bruno H.
    APPLIED ENERGY, 2023, 350
  • [50] Enhancing Pedestrian Safety: Predicting Movements with Deep Learning Models
    Farzana, Faria
    Valles, Damian
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0008 - 0015