Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models

被引:6
|
作者
Li, Lu [1 ,2 ,3 ]
Dai, Yongjiu [1 ,2 ,3 ]
Wei, Zhongwang [1 ,2 ,3 ]
Wei, Shangguan [1 ,2 ,3 ]
Wei, Nan [1 ,2 ,3 ]
Zhang, Yonggen [4 ]
Li, Qingliang [5 ]
Li, Xian-Xiang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangzhou 510275, Peoples R China
[3] Guangdong Prov Key Lab Climate Change & Nat Disast, Guangzhou 510275, Peoples R China
[4] Tianjin Univ, Inst Surface Earth Syst Sci, Sch Earth Syst Sci, Tianjin 300072, Peoples R China
[5] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130123, Peoples R China
关键词
soil moisture forecasting; hybrid model; deep learning; ConvLSTM; attention mechanism; IN-SITU; SURFACE; INDEX; SATELLITE;
D O I
10.1007/s00376-023-3181-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurate soil moisture (SM) prediction is critical for understanding hydrological processes. Physics-based (PB) models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes. In addition to PB models, deep learning (DL) models have been widely used in SM predictions recently. However, few pure DL models have notably high success rates due to lacking physical information. Thus, we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions. To this end, we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale (attention model). We further built an ensemble model that combined the advantages of different hybrid schemes (ensemble model). We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory (ConvLSTM) model for 1-16 days of SM predictions. The performances of the proposed hybrid models were investigated and compared with two existing hybrid models. The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models. Moreover, the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions. It is highlighted that the ensemble model outperformed the pure DL model over 79.5% of in situ stations for 16-day predictions. These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
引用
收藏
页码:1326 / 1341
页数:16
相关论文
共 50 条
  • [21] Deep Learning Models for Time Series Forecasting: A Review
    Li, Wenxiang
    Law, K. L. Eddie
    IEEE ACCESS, 2024, 12 : 92306 - 92327
  • [22] Interpretability of deep learning models for crop yield forecasting
    Paudel, Dilli
    de Wit, Allard
    Boogaard, Hendrik
    Marcos, Diego
    Osinga, Sjoukje
    Athanasiadis, Ioannis N.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 206
  • [23] Deep Learning Models for PV Power Forecasting: Review
    Yu, Junfeng
    Li, Xiaodong
    Yang, Lei
    Li, Linze
    Huang, Zhichao
    Shen, Keyan
    Yang, Xu
    Xu, Zhikang
    Zhang, Dongying
    Du, Shuai
    ENERGIES, 2024, 17 (16)
  • [24] Deep learning models in photovoltaic power forecasting: A review
    Coya, Zahiir
    Khoodaruth, Abdel
    Ramenah, Harry
    Oree, Vishwamitra
    Murdan, Anshu Prakash
    Bessafi, Miloud
    2024 1ST INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND ARTIFICIAL INTELLIGENCE, SESAI 2024, 2024, : 174 - +
  • [25] Enhancing the Performance of Machine Learning and Deep Learning-Based Flood Susceptibility Models by Integrating Grey Wolf Optimizer (GWO) Algorithm
    Mabdeh, Ali Nouh
    Ajin, Rajendran Shobha
    Razavi-Termeh, Seyed Vahid
    Ahmadlou, Mohammad
    Al-Fugara, A'kif
    REMOTE SENSING, 2024, 16 (14)
  • [26] A comparative analysis of deep learning models for accurate spatio-temporal soil moisture prediction
    Zhu, Litao
    Dai, Wen
    Huang, Jiru
    Luo, Zicong
    GEOCARTO INTERNATIONAL, 2025, 40 (01)
  • [27] Enhancing Facemask Detection using Deep learning Models
    Abdirahman, Abdullahi Ahmed
    Hashi, Abdirahman Osman
    Dahir, Ubaid Mohamed
    Elmi, Mohamed Abdirahman
    Rodriguez, Octavio Ernest Romo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 570 - 577
  • [28] Physics-Based Deep Learning for Fiber-Optic Communication Systems
    Hager, Christian
    Pfister, Henry D.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 280 - 294
  • [29] A Physics-based Deep Learning Approach for Fault Diagnosis of Rotating Machinery
    Sadoughi, Mohammadkazem
    Hu, Chao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5919 - 5923
  • [30] Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Eguia-Oller, Pablo
    Granada-Alvarez, Enrique
    APPLIED SCIENCES-BASEL, 2022, 12 (17):