Integrated metabolomic and transcriptomic analyses provide comprehensive new insights into the mechanism of chitosan delay of kiwifruit postharvest ripening

被引:10
|
作者
Yang, Haiying [1 ,2 ]
Zhang, Xueli [1 ]
Wu, Rui [1 ]
Tang, Xiaoli [3 ]
Yang, Yanqing [1 ]
Fan, Xinguang [1 ]
Gong, Hansheng [1 ]
Grierson, Donald [4 ]
Yin, Xueren [5 ]
Li, Jianzhao [3 ]
Zhang, Aidi [1 ]
机构
[1] Ludong Univ, Yantai Engn Res Ctr Food Green Proc & Qual Control, Sch Food Engn, Yantai Key Lab Nanosci & Technol Prepared Food, Yantai 264025, Peoples R China
[2] Hunan Agr Univ, Coll Food Sci & Technol, Changsha 410125, Peoples R China
[3] Ludong Univ, Engn Res Inst Agr & Forestry, Yantai 264025, Peoples R China
[4] Univ Nottingham, Sch Biosci, Plant & Crop Sci Div, Sutton Bonington Campus, Loughborough LE125RD, England
[5] Anhui Agr Univ, Sch Hort, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
Kiwifruit; Chitosan; Fruit ripening; Transcriptome; Metabolome; CELL-WALL METABOLISM; ACTINIDIA-CHINENSIS; FRUIT; ETHYLENE; IDENTIFICATION; COATINGS; STARCH; PEACH; ACID;
D O I
10.1016/j.postharvbio.2023.112746
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Chitosan (CTS) plays an important role in delaying fruit ripening and extending fruit shelf life when used as an eco-friendly and edible coating. However, there is still limited understanding about the molecular mechanisms and effects of chitosan on the quality of postharvest kiwifruit. In this study, firmness, total soluble solid, acid, phenolic content, flavonoid content, starch and ascorbic acid concentration, ethylene production, and cell-wall components were determined after CTS treatment. Fruit treated with CTS maintained higher firmness, starch and flavonoids (3.85-, 1.78-and 2.08-fold higher, respectively, after 6d compared to the control). Widely targeted metabolome analysis revealed flavonoids (dihydrokaempferol-7-O-glucoside, eriodictyol-3 '-O-glucoside) and lipids (LysoPC 16:0 (2 n isomer)), and punicic acid (9Z,11E,13Z-octadecatrienoic acid) were the main differential metabolites. KEGG pathway enrichment analysis showed 'metabolic pathways (ko01100)' and 'biosynthesis of secondary metabolites (ko01110)' were the main KEGG pathways. Integrated metabolomic and transcriptomic analyses revealed that the expression of five key structural genes, including three starch degradation genes (AcBAM3L, AcBAM3.1, Acc31818 (PHS)), one cell-wall modification gene (AcPG1), and one flavonoids biosynthesis gene (Acc18331 (F3'H)), and 12 transcription factors (AcNAC083, AcRAP2-10, AcERF14, AcERF64, Acc27131 (bZIP), AcHSFB2a, Acc12589 (IAA), AcMYB13, Acc20159 (bHLH), AcBEL1, AcbHLH149, AcWRKY75) were different. Real-time PCR analyses verified that the expression of AcBAM3L, AcBAM3.1, AcPG1 and most of the 12 transcription factors were suppressed by CTS treatment, while the expression of Acc31818 (PHS), Acc18331 (F3'H) and AcBEL1 were enhanced by CTS treatment. Together, these CTS-responsive genes may play critical roles in determining the rate of ripening and quality change of postharvest kiwifruit.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit
    Wang, Ke
    Yin, Xue-Ren
    Zhang, Bo
    Grierson, Don
    Xu, Chang-Jie
    Chen, Kun-Song
    PLANT CELL AND ENVIRONMENT, 2017, 40 (08) : 1531 - 1551
  • [42] Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress
    Zeng, Ruier
    Chen, Tingting
    Li, Xi
    Cao, Jing
    Li, Jie
    Xu, Xueyu
    Zhang, Lei
    Chen, Yong
    PLANT CELL AND ENVIRONMENT, 2024, 47 (08) : 3198 - 3214
  • [43] Metabolomic and transcriptomic analyses reveal the regulation mechanism of postharvest light-induced phenolics accumulation in mango peel
    Yang, Chengkun
    Wang, Xiaowen
    Zhu, Wencan
    Weng, Zhongrui
    Li, Feili
    Zhang, Yawen
    Wu, Hongxia
    Zhou, Kaibing
    Strid, Ake
    Qian, Minjie
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2024, 213
  • [44] Integrated transcriptomic and metabolomic analyses revealed the role of SlMYC2 in tomato (Solanum lycopersicum L.) fruit development and ripening
    Zhao, Xiuming
    Li, Fujun
    Li, Xiaoan
    Ali, Maratab
    Ding, Jun
    Song, Yanan
    Fu, Xiaodong
    Liu, Jiong
    Kong, Xiangrong
    Zhang, Xinhua
    SCIENTIA HORTICULTURAE, 2024, 325
  • [45] Transcriptomic analyses provide new insights into immune response of the Procambarus clarkii intestines to Aeromonas hydrophila challenge
    Liu, Xin
    Bian, Dan -Dan
    Jiang, Jun-Jie
    Tang, Sheng
    Lu, Xiang
    Zhang, Dai-Zhen
    Liu, Qiu-Ning
    Tang, Bo-Ping
    Dai, Li-Shang
    AQUACULTURE REPORTS, 2024, 36
  • [46] Comparative physicochemical, hormonal, transcriptomic and proteomic analyses provide new insights into the formation mechanism of two chemotypes of Pogostemon cablin
    Zhang, Hongyi
    Ou, Xiaohua
    Chen, Wenyi
    Zeng, Qing
    Yan, Yaling
    He, Mengling
    Yan, Hanjing
    PLOS ONE, 2023, 18 (09):
  • [47] Metabolomic and Transcriptomic Analyses Reveal New Insights into the Role of Metabolites and Genes in Modulating Flower Colour of Clematis tientaiensis
    Qian, Renjuan
    Ye, Youju
    Hu, Qingdi
    Ma, Xiaohua
    Zhang, Xule
    Zheng, Jian
    HORTICULTURAE, 2023, 9 (01)
  • [48] Comparative Biochemical and Transcriptomic Analyses Provide New Insights into Phytoplasma Infection Responses in Cucumber
    Wang, Xueting
    Hu, Qiming
    Wang, Jiaxi
    Lou, Lina
    Xu, Xuewen
    Chen, Xuehao
    GENES, 2022, 13 (10)
  • [49] Transcriptomic and Metabolomic Analyses Provide Insights into the Formation of the Peach-like Aroma of Fragaria nilgerrensis Schlecht. Fruits
    Wang, Ai-Hua
    Ma, Hong-Ye
    Zhang, Bao-Hui
    Mo, Chuan-Yuan
    Li, En-Hong
    Li, Fei
    GENES, 2022, 13 (07)
  • [50] Comparative transcriptomic and metabolomic analyses provide insights into the responses to high temperature stress in Alfalfa (Medicago sativa L.)
    Zhou, Juan
    Tang, Xueshen
    Li, Jiahao
    Dang, Shizhuo
    Ma, Haimei
    Zhang, Yahong
    BMC PLANT BIOLOGY, 2024, 24 (01):