Integrated metabolomic and transcriptomic analyses provide comprehensive new insights into the mechanism of chitosan delay of kiwifruit postharvest ripening

被引:10
|
作者
Yang, Haiying [1 ,2 ]
Zhang, Xueli [1 ]
Wu, Rui [1 ]
Tang, Xiaoli [3 ]
Yang, Yanqing [1 ]
Fan, Xinguang [1 ]
Gong, Hansheng [1 ]
Grierson, Donald [4 ]
Yin, Xueren [5 ]
Li, Jianzhao [3 ]
Zhang, Aidi [1 ]
机构
[1] Ludong Univ, Yantai Engn Res Ctr Food Green Proc & Qual Control, Sch Food Engn, Yantai Key Lab Nanosci & Technol Prepared Food, Yantai 264025, Peoples R China
[2] Hunan Agr Univ, Coll Food Sci & Technol, Changsha 410125, Peoples R China
[3] Ludong Univ, Engn Res Inst Agr & Forestry, Yantai 264025, Peoples R China
[4] Univ Nottingham, Sch Biosci, Plant & Crop Sci Div, Sutton Bonington Campus, Loughborough LE125RD, England
[5] Anhui Agr Univ, Sch Hort, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
Kiwifruit; Chitosan; Fruit ripening; Transcriptome; Metabolome; CELL-WALL METABOLISM; ACTINIDIA-CHINENSIS; FRUIT; ETHYLENE; IDENTIFICATION; COATINGS; STARCH; PEACH; ACID;
D O I
10.1016/j.postharvbio.2023.112746
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Chitosan (CTS) plays an important role in delaying fruit ripening and extending fruit shelf life when used as an eco-friendly and edible coating. However, there is still limited understanding about the molecular mechanisms and effects of chitosan on the quality of postharvest kiwifruit. In this study, firmness, total soluble solid, acid, phenolic content, flavonoid content, starch and ascorbic acid concentration, ethylene production, and cell-wall components were determined after CTS treatment. Fruit treated with CTS maintained higher firmness, starch and flavonoids (3.85-, 1.78-and 2.08-fold higher, respectively, after 6d compared to the control). Widely targeted metabolome analysis revealed flavonoids (dihydrokaempferol-7-O-glucoside, eriodictyol-3 '-O-glucoside) and lipids (LysoPC 16:0 (2 n isomer)), and punicic acid (9Z,11E,13Z-octadecatrienoic acid) were the main differential metabolites. KEGG pathway enrichment analysis showed 'metabolic pathways (ko01100)' and 'biosynthesis of secondary metabolites (ko01110)' were the main KEGG pathways. Integrated metabolomic and transcriptomic analyses revealed that the expression of five key structural genes, including three starch degradation genes (AcBAM3L, AcBAM3.1, Acc31818 (PHS)), one cell-wall modification gene (AcPG1), and one flavonoids biosynthesis gene (Acc18331 (F3'H)), and 12 transcription factors (AcNAC083, AcRAP2-10, AcERF14, AcERF64, Acc27131 (bZIP), AcHSFB2a, Acc12589 (IAA), AcMYB13, Acc20159 (bHLH), AcBEL1, AcbHLH149, AcWRKY75) were different. Real-time PCR analyses verified that the expression of AcBAM3L, AcBAM3.1, AcPG1 and most of the 12 transcription factors were suppressed by CTS treatment, while the expression of Acc31818 (PHS), Acc18331 (F3'H) and AcBEL1 were enhanced by CTS treatment. Together, these CTS-responsive genes may play critical roles in determining the rate of ripening and quality change of postharvest kiwifruit.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus
    Xie, Jiahui
    Sun, Yi
    Cao, Yue
    Han, Lingshu
    Li, Yuanxin
    Ding, Beichen
    Gao, Chuang
    Hao, Pengfei
    Jin, Xin
    Chang, Yaqing
    Song, Jian
    Yin, Donghong
    Ding, Jun
    MARINE BIOTECHNOLOGY, 2022, 24 (01) : 151 - 162
  • [12] Transcriptomic and Metabolomic Analyses Provide Insights Into an Aberrant Tissue of Tea Plant (Camellia sinensis)
    Liu, Ding-Ding
    Wang, Jun-Ya
    Tang, Rong-Jin
    Chen, Jie-Dan
    Liu, Zhen
    Chen, Liang
    Yao, Ming-Zhe
    Ma, Chun-Lei
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [13] Metabolomic and Transcriptomic Profiling Provide Novel Insights into Fruit Ripening and Ripening Disorder Caused by 1-MCP Treatments in Papaya
    Zheng, Senlin
    Hao, Yanwei
    Fan, Silin
    Cai, Jiahui
    Chen, Weixin
    Li, Xueping
    Zhu, Xiaoyang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (02) : 1 - 22
  • [14] Novel Insights into Anthocyanin Synthesis in the Calyx of Roselle Using Integrated Transcriptomic and Metabolomic Analyses
    Li, Jing
    Li, Yunqing
    Li, Mei
    Lin, Lihui
    Qi, Jianmin
    Xu, Jiantang
    Zhang, Liwu
    Fang, Pingping
    Tao, Aifen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [15] Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress
    Liexiang Huangfu
    Zihui Zhang
    Yong Zhou
    Enying Zhang
    Rujia Chen
    Huimin Fang
    Pengcheng Li
    Yang Xu
    Youli Yao
    Minyan Zhu
    Shuangyi Yin
    Chenwu Xu
    Yue Lu
    Zefeng Yang
    Plant Growth Regulation, 2021, 95 : 19 - 31
  • [16] Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress
    Huangfu, Liexiang
    Zhang, Zihui
    Zhou, Yong
    Zhang, Enying
    Chen, Rujia
    Fang, Huimin
    Li, Pengcheng
    Xu, Yang
    Yao, Youli
    Zhu, Minyan
    Yin, Shuangyi
    Xu, Chenwu
    Lu, Yue
    Yang, Zefeng
    PLANT GROWTH REGULATION, 2021, 95 (01) : 19 - 31
  • [17] Chitosan boosts ginger disease resistance: Insights from transcriptomic and metabolomic analyses
    Zhang, Lingling
    Fang, Shengyou
    Sun, Chong
    Liang, Huaru
    Ma, Jiawei
    Jia, Qie
    Yin, Junliang
    Zhu, Yongxing
    Liu, Yiqing
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2024, 205
  • [18] Transcriptomics and metabolomics analyses provide insights into postharvest ripening and senescence of tomato fruit under low temperature
    Bai, Chunmei
    Wu, Caie
    Ma, Lili
    Fu, Anzhen
    Zheng, Yanyan
    Han, Jiawei
    Li, Changbao
    Yuan, Shuzhi
    Zheng, Shufang
    Gao, Lipu
    Zhang, Xinhua
    Wang, Qing
    Meng, Demei
    Zuo, Jinhua
    HORTICULTURAL PLANT JOURNAL, 2023, 9 (01) : 109 - 121
  • [19] Integrated transcriptomic and metabolomic analyses elucidate the mechanism by which grafting impacts potassium utilization efficiency in tobacco
    Niu, Lulu
    Hu, Wei
    Wang, Fazhan
    Shaker, Majid
    Yang, Xin
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [20] Integrated physiological, transcriptomic and metabolomic analyses provide insights into phosphorus-mediated cadmium detoxification in Salix caprea roots
    Li, Ao
    Wang, Yuancheng
    Li, Xia
    Yin, Jiahui
    Li, Yadong
    Hu, Yaofang
    Zou, Junzhu
    Liu, Junxiang
    Sun, Zhenyuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211