PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data

被引:14
|
作者
Wang, Bo [1 ]
Li, Hongtao [2 ]
Guo, Yina [1 ,3 ]
Wang, Jie [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Normal Univ, Coll Math & Comp Sci, Taiyuan 030039, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, 66 Waliu Rd, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Homomorphic encryption; Privacy; -preserving; Healthcare data;
D O I
10.1016/j.asoc.2023.110677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare data are characterized by explosive growth and value, which is the private data of patients, and its characteristics and storage environment have brought significant issues of data privacy and security. People are reluctant to share their data for privacy concerns during machine learning. To balance this contradiction, Federated Learning was proposed as a solution to train on private data without sharing it. However, many studies show that there is still the possibility of privacy leakage during the training process of federated learning. In light of this, we propose a privacy-preserving federated learning scheme with homomorphic encryption(PPFLHE). Specifically, on the client side, homomorphic encryption technology is used to encrypt the training model shared by users to ensure its security and privacy. In addition, to prevent internal attacks, Access Control (AC) technology is used to confirm the user's identity and judge whether it is trusted; on the server side, the Acknowledgment (ACK) mechanism is designed to remove the dropped or unresponsive users temporarily, which reduces the waiting delay and communication overhead, and solves the problem of user's exiting during training. Theoretical analysis and experimental results show that the proposed scheme achieves high data utility and classification accuracy (81.53%), and low communication delay while achieving privacy preserving, compared to state-of-the-art methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Poisoning attacks resilient privacy-preserving federated learning scheme based on lightweight homomorphic encryption
    Zhang, Chong
    Zhang, Xiaojun
    Yang, Xingchun
    Liu, Bingyun
    Zhang, Yuan
    Zhou, Rang
    INFORMATION FUSION, 2025, 121
  • [12] A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption
    Arazzi, Marco
    Nicolazzo, Serena
    Nocera, Antonino
    INFORMATION SYSTEMS FRONTIERS, 2023, 27 (1) : 367 - 390
  • [13] A privacy-preserving parallel and homomorphic encryption scheme
    Min, Zhaoe
    Yang, Geng
    Shi, Jingqi
    OPEN PHYSICS, 2017, 15 (01): : 135 - 142
  • [14] Federated learning scheme for privacy-preserving of medical data
    Bo W.
    Hongtao L.
    Jie W.
    Yina G.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (05): : 166 - 177
  • [15] FedNIC: enhancing privacy-preserving federated learning via homomorphic encryption offload on SmartNIC
    Choi, Sean
    Patel, Disha
    Tootaghaj, Diman Zad
    Cao, Lianjie
    Ahmed, Faraz
    Sharma, Puneet
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [16] Masking and Homomorphic Encryption-Combined Secure Aggregation for Privacy-Preserving Federated Learning
    Park, Soyoung
    Lee, Junyoung
    Harada, Kaho
    Chi, Jeonghee
    ELECTRONICS, 2025, 14 (01):
  • [17] Privacy-preserving federated learning based on multi-key homomorphic encryption
    Ma, Jing
    Naas, Si-Ahmed
    Sigg, Stephan
    Lyu, Xixiang
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5880 - 5901
  • [18] Privacy-Preserving federated learning in medical diagnosis with homomorphic re-Encryption
    Ku, Hanchao
    Susilo, Willy
    Zhang, Yudi
    Liu, Wenfen
    Zhang, Mingwu
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [19] Privacy-Preserving Authenticated Federated Learning Scheme for Smart Healthcare System
    Tu, Jun
    Shen, Gang
    EMERGING INFORMATION SECURITY AND APPLICATIONS, EISA 2023, 2024, 2004 : 38 - 57
  • [20] Privacy Preserving Federated Learning Using CKKS Homomorphic Encryption
    Qiu, Fengyuan
    Yang, Hao
    Zhou, Lu
    Ma, Chuan
    Fang, LiMing
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 427 - 440