PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data

被引:14
|
作者
Wang, Bo [1 ]
Li, Hongtao [2 ]
Guo, Yina [1 ,3 ]
Wang, Jie [2 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Normal Univ, Coll Math & Comp Sci, Taiyuan 030039, Peoples R China
[3] Taiyuan Univ Sci & Technol, Sch Elect Informat Engn, 66 Waliu Rd, Taiyuan, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Homomorphic encryption; Privacy; -preserving; Healthcare data;
D O I
10.1016/j.asoc.2023.110677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare data are characterized by explosive growth and value, which is the private data of patients, and its characteristics and storage environment have brought significant issues of data privacy and security. People are reluctant to share their data for privacy concerns during machine learning. To balance this contradiction, Federated Learning was proposed as a solution to train on private data without sharing it. However, many studies show that there is still the possibility of privacy leakage during the training process of federated learning. In light of this, we propose a privacy-preserving federated learning scheme with homomorphic encryption(PPFLHE). Specifically, on the client side, homomorphic encryption technology is used to encrypt the training model shared by users to ensure its security and privacy. In addition, to prevent internal attacks, Access Control (AC) technology is used to confirm the user's identity and judge whether it is trusted; on the server side, the Acknowledgment (ACK) mechanism is designed to remove the dropped or unresponsive users temporarily, which reduces the waiting delay and communication overhead, and solves the problem of user's exiting during training. Theoretical analysis and experimental results show that the proposed scheme achieves high data utility and classification accuracy (81.53%), and low communication delay while achieving privacy preserving, compared to state-of-the-art methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A privacy-preserving federated learning scheme with homomorphic encryption and edge computing
    Zhu, Bian
    Niu, Ling
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 : 11 - 20
  • [2] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [3] Blockchain-based federated learning with homomorphic encryption for privacy-preserving healthcare data sharing
    Firdaus, Muhammad
    Larasati, Harashta Tatimma
    Hyune-Rhee, Kyung
    INTERNET OF THINGS, 2025, 31
  • [4] Privacy-Preserving Federated Learning with Homomorphic Encryption and Sparse Compression
    Yang, Wentao
    Bai, Yang
    Rao, Yutang
    Wu, Hongyan
    Xing, Gaojie
    Zhou, Yimin
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE, CCAI 2024, 2024, : 192 - 198
  • [5] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [6] An Efficient and Privacy-Preserving Federated Learning Approach Based on Homomorphic Encryption
    Castro, Francesco
    Impedovo, Donato
    Pirlo, Giuseppe
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2025, 6 : 336 - 347
  • [7] Platform Design for Privacy-Preserving Federated Learning using Homomorphic Encryption
    Kim, Hokeun
    Kim, Younghyun
    Yang, Hoeseok
    2024 FORUM ON SPECIFICATION & DESIGN LANGUAGES, FDL 2024, 2024, : 54 - 58
  • [8] Poisoning attacks resilient privacy-preserving federated learning scheme based on lightweight homomorphic encryption
    Zhang, Chong
    Zhang, Xiaojun
    Yang, Xingchun
    Liu, Bingyun
    Zhang, Yuan
    Zhou, Rang
    INFORMATION FUSION, 2025, 121
  • [9] A privacy-preserving parallel and homomorphic encryption scheme
    Min, Zhaoe
    Yang, Geng
    Shi, Jingqi
    OPEN PHYSICS, 2017, 15 (01): : 135 - 142
  • [10] Homomorphic Encryption-Based Privacy-Preserving Federated Learning in IoT-Enabled Healthcare System
    Zhang, Li
    Xu, Jianbo
    Vijayakumar, Pandi
    Sharma, Pradip Kumar
    Ghosh, Uttam
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2864 - 2880