LRCDNET: A LIGHTWEIGHT AND REAL-TIME CLOUD DETECTION NETWORK FOR REMOTE SENSING IMAGES

被引:0
作者
Li, Ruofu [1 ]
Yang, Junli [1 ]
Zhou, Pengcheng [1 ]
Deng, Ben [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
cloud detection; self-attention mechanism; deformable context; remote sensing images; real-time; SHADOW DETECTION;
D O I
10.1109/IGARSS52108.2023.10282702
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Most CNN-based cloud detection methods have high computational complexity, large parameter size, and slow inference speed, which limit their practical applications. Furthermore, cloud detection is a challenging task due to the irregular shapes and random sizes of clouds, often leading to inaccurate detection. To overcome these challenges, we propose a lightweight and real-time network (LRCDNet) tailored for cloud detection. By incorporating Short-Term Dense Concatenate (STDC) module, Multi-group Deformable Convolution (DCNv3) and multiple linear self-attention mechanisms, LRCDNet can effectively extract detail information and adaptively build long-term dependencies. In comparison to the state-of-the-art cloud detection and typical real-time semantic segmentation methods, our proposed LRCDNet strikes a better balance between accuracy and computational costs. Specifically, when tested on the GF-1 WHU dataset, LRCDNet achieves an overall accuracy (OA) of 97.37%, a F1-score of 92.42%, and a remarkable inference speed of 122.83 Frames Per Second (FPS) on a RTX A4000 GPU, with only 19.72MB parameters and 10.69G FLOPs calculations.
引用
收藏
页码:6522 / 6525
页数:4
相关论文
共 15 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[3]   Rethinking BiSeNet For Real-time Semantic Segmentation [J].
Fan, Mingyuan ;
Lai, Shenqi ;
Huang, Junshi ;
Wei, Xiaoming ;
Chai, Zhenhua ;
Luo, Junfeng ;
Wei, Xiaolin .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9711-9720
[4]   A cloud detection algorithm for satellite imagery based on deep learning [J].
Jeppesen, Jacob Hoxbroe ;
Jacobsen, Rune Hylsberg ;
Inceoglu, Fadil ;
Toftegaard, Thomas Skjodeberg .
REMOTE SENSING OF ENVIRONMENT, 2019, 229 :247-259
[5]   A cloud image detection method based on SVM vector machine [J].
Li, Pengfei ;
Dong, Limin ;
Xiao, Huachao ;
Xu, Mingliang .
NEUROCOMPUTING, 2015, 169 :34-42
[6]   Multistage Attention ResU-Net for Semantic Segmentation of Fine-Resolution Remote Sensing Images [J].
Li, Rui ;
Zheng, Shunyi ;
Duan, Chenxi ;
Su, Jianlin ;
Zhang, Ce .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[7]   Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4-8 images [J].
Qiu, Shi ;
He, Binbin ;
Zhu, Zhe ;
Liao, Zhanmang ;
Quan, Xingwen .
REMOTE SENSING OF ENVIRONMENT, 2017, 199 :107-119
[8]   UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery [J].
Wang, Libo ;
Li, Rui ;
Zhang, Ce ;
Fang, Shenghui ;
Duan, Chenxi ;
Meng, Xiaoliang ;
Atkinson, Peter M. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 190 :196-214
[9]  
Wang W., 2022, ARXIV221105778
[10]   Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network [J].
Wieland, Marc ;
Li, Yu ;
Martinis, Sandro .
REMOTE SENSING OF ENVIRONMENT, 2019, 230