Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity

被引:30
作者
Tan, Hongyun [1 ]
Zhao, Shengqiu [1 ]
Ali, S. Eltahir [2 ]
Zheng, Shuhong [1 ]
Alanazi, Abdullah K. [3 ]
Wang, Rui [1 ]
Zhang, Haining [1 ,4 ]
Abo-Dief, Hala M. [2 ]
Bin Xu, Ben [5 ]
Algadi, Hassan [7 ]
Li, Handong [5 ,6 ]
Wasnik, Priyanka [5 ]
Guo, Zhanhu [5 ]
Tang, Haolin [1 ,4 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Taif Univ, Univ Coll Ranyah, Dept Sci & Technol, POB 11099, Taif 21944, Saudi Arabia
[3] Taif Univ, Coll Sci, Dept Chem, POB 11099, Taif 21944, Saudi Arabia
[4] Adv Energy Sci & Technol Guangdong Lab, Foshan Xianhu Lab, Xianhu Hydrogen Valley, Foshan 528200, Peoples R China
[5] Northumbria Univ, Integrated Composites Lab ICL Mech & Construct Eng, Newcastle Upon Tyne NE1, England
[6] Taiyuan Univ Sci & Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[7] Najran Univ, Fac Engn, Dept Elect Engn, Najran 11001, Saudi Arabia
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2023年 / 166卷
基金
中国国家自然科学基金;
关键词
Proton exchange membrane; Structural design; Dual proton conduction; Hydrophilic channel; Proton conductivity; Fuel cells; POLYMER ELECTROLYTE MEMBRANES; POLY(ARYLENE ETHER)S; PERFLUORINATED SURFACTANTS; CONDUCTIVITY; TRANSPORT; KETONE)S;
D O I
10.1016/j.jmst.2023.03.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Structural optimization of ionomers is an effective strategy for achieving high-performance proton exchange membranes (PEMs) under low relative humidity (RH) conditions. In this study, sulfonimide group and trifluoromethanesulfonate acid (TFSA) ionic liquids were introduced to the perfluorosulfonic acid (PFSA) side chain, resulting in polymer membranes with varying chain lengths (i.e., PFC 2 -TF-SI, PFC 4 -TF-SI, and PFC 5 -TF-SI). This dual proton-conducting structure extended the length of the hydrophilic side chain and enhanced the hydrophobic-hydrophilic phase separation, aiding in the formation of proton transport channels. Notably, the proton conductivity of PFC 5 -TF-SI and PFC 2 -TF-SI membranes reached 7.1 and 10.6 mS/cm at 30% RH and 80 & DEG;C, respectively, which were approximately 29.1% and 92.7% higher than that of the pristine PFC 5 -SA membrane (5.5 mS/cm). Furthermore, the maximum power density of the PFC 5 -TF-SI and PFC 2 -TF-SI membranes from the built single fuel cell achieved 649 and 763 mW/cm 2 at 30% RH and 80 & DEG;C, respectively, which were higher than that of the pristine PFC 5 -SA membrane (567 mW/cm 2 ) by about 14.5% and 34.6%, respectively. Thus, this study provides a strategy for PEM design under low RH conditions.& COPY; 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 74 条
[1]   Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J].
Bae, JM ;
Honma, I ;
Murata, M ;
Yamamoto, T ;
Rikukawa, M ;
Ogata, N .
SOLID STATE IONICS, 2002, 147 (1-2) :189-194
[2]   Nanostructure and Transport Properties of Proton Conducting Self-Assembled Perfluorinated Surfactants: A Bottom-Up Approach toward PFSA Fuel Cell Membranes [J].
Berrod, Quentin ;
Lyonnard, Sandrine ;
Guillermo, Armel ;
Ollivier, Jacques ;
Frick, Bernhard ;
Manseri, Abdelatif ;
Ameduri, Bruno ;
Gebel, Gerard .
MACROMOLECULES, 2015, 48 (17) :6166-6176
[3]   Facile Chemical Modification of Aquivion® Membranes for Anionic Fuel Cells [J].
Bonizzoni, Simone ;
Stilli, Pietro ;
Lohmann-Richters, Felix ;
Oldani, Claudio ;
Ferrara, Chiara ;
Papagni, Antonio ;
Beverina, Luca ;
Mustarelli, Piercarlo .
CHEMELECTROCHEM, 2021, 8 (12) :2231-2237
[4]   A hierarchical graphitic carbon nitride supported by metal-organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation [J].
Chamanehpour, Elham ;
Sayadi, Mohammad Hossein ;
Hajiani, Mahmood .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (03) :2461-2477
[5]   MXene@nitrogen-doped carbon films for supercapacitor and piezoresistive sensing applications [J].
Chen, Anli ;
Wang, Chaoying ;
Ali, Ola A. Abu ;
Mahmoud, Samy F. ;
Shi, Yuting ;
Ji, Yanxiu ;
Algadi, Hassan ;
El-Bahy, Salah M. ;
Huang, Mina ;
Guo, Zhanhu ;
Cui, Dapeng ;
Wei, Huige .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 163
[6]   Ex situ aging effect on sulfonated poly(ether ether ketone) membrane: Hydration-dehydration cycling and hydrothermal treatment [J].
Choi, Seung-Young ;
Jin, Kyeong Sik .
JOURNAL OF ENERGY CHEMISTRY, 2022, 70 :583-592
[7]   Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review [J].
Dang, Congcong ;
Mu, Qin ;
Xie, Xiubo ;
Sun, Xueqin ;
Yang, Xiaoyang ;
Zhang, Yuping ;
Maganti, Srihari ;
Huang, Mina ;
Jiang, Qinglong ;
Seok, Ilwoo ;
Du, Wei ;
Hou, Chuanxin .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (02) :606-626
[8]   Preparation of sulfonated copolyimides containing aliphatic linkages as proton-exchange membranes for fuel cell applications [J].
Deligoez, Hueseyin ;
Vantansever, Sibel ;
Koc, S. Naci ;
Oeksuezoemer, Faruk ;
Oezguemues, Saadet ;
Guerkaynak, M. Ali .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (02) :1216-1224
[9]   Modification of coconut shell activated carbon and purification of volatile organic waste gas acetone [J].
Deng, Zhihua ;
Zhang, Qiuhan ;
Deng, Qing ;
Guo, Zhanhu ;
Seok, Ilwoo .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (01) :491-503
[10]   Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas [J].
Deng, Zhihua ;
Deng, Qing ;
Wang, Linqi ;
Xiang, Ping ;
Lin, Jing ;
Murugadoss, Vignesh ;
Song, Gang .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (03) :751-760