On the minimum degree of minimally 1-tough, triangle-free graphs and minimally 3/2-tough, claw-free graphs

被引:5
作者
Ma, Hui [1 ]
Hu, Xiaomin [1 ]
Yang, Weihua [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
关键词
Minimally t-tough; Toughness; Minimum degree; Claw-free graphs;
D O I
10.1016/j.disc.2023.113352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is minimally t-tough if the toughness of G is t and deletion of any edge from G decreases its toughness. Katona et al. conjectured that the minimum degree of any minimally t-tough graph is inverted right perpendicular2tinverted left perpendicular and gave some upper bounds on the minimum degree graph G with girth g >= 5 has minimum degree at most left perpendicular n/g+1 right perpendicular + g - 1 and a minimally 1-tough graph with girth 4has minimum degree at most n+6/4. We also prove that the minimum degree of minimally 3/2-tough, claw-free graphs is 3. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 13 条
[1]  
Broersma H, 1999, NETWORKS, V33, P233, DOI 10.1002/(SICI)1097-0037(199905)33:3<233::AID-NET9>3.0.CO
[2]  
2-A
[3]  
Entringer R.C., 1978, NANTA MATH, V11, P141
[4]   10-tough chordal graphs are Hamiltonian [J].
Kabela, Adam ;
Kaiser, Tomas .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 :417-427
[5]  
Kaiser T., Problems from the workshop on dominating cycles
[6]  
Katona GY, 2023, Arxiv, DOI arXiv:1802.00055
[7]   Properties of minimally t-toughgraphs [J].
Katona, Gyula Y. ;
Soltesz, Daniel ;
Varga, Kitti .
DISCRETE MATHEMATICS, 2018, 341 (01) :221-231
[8]   Characterization of 1-tough graphs using factors [J].
Lu, Hongliang ;
Kano, Mikio .
DISCRETE MATHEMATICS, 2020, 343 (08)
[9]   PROPERTY OF ATOMS OF FINITE GRAPHS [J].
MADER, W .
ARCHIV DER MATHEMATIK, 1971, 22 (03) :333-&
[10]   HAMILTONIAN RESULTS IN K1,3 FREE GRAPHS [J].
MATTHEWS, MM ;
SUMNER, DP .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :139-146