Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds

被引:1
作者
Barletta, Giuseppina [2 ]
Cianchi, Andrea [1 ]
Maz'ya, Vladimir [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50137 Florence, Italy
[2] Univ Mediterranea Reggio Calabria, Dipartimento Ingn Civile Energia Ambiente & Mat, Via Graziella Loc Feo di Vito, I-89122 Reggio Di Calabria, Italy
[3] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
Eigenfunctions; p-Laplacian; Riemannian manifold; isocapacitary inequalities; isoperimetric inequalities; ISOPERIMETRIC PROFILE; IMBEDDING THEOREMS; SOBOLEV SPACES; INEQUALITIES; EIGENVALUE; CONSTANTS; SPECTRUM; SETS;
D O I
10.1515/acv-2022-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Eigenvalue problems for the p-Laplace operator in domains with finite volume, on noncompact Riemannian manifolds, are considered. If the domain does not coincide with the whole manifold, Neumann boundary conditions are imposed. Sharp assumptions ensuring L-q- or L-infinity-bounds for eigenfunctions are offered either in terms of the isoperimetric function or of the isocapacitary function of the domain.
引用
收藏
页码:319 / 352
页数:34
相关论文
共 60 条
[1]   Well-posed elliptic Neumann problems involving irregular data and domains [J].
Alvino, Angelo ;
Cianchi, Andrea ;
Maz'ya, Vladimir G. ;
Mercaldo, Anna .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (04) :1017-1054
[2]  
[Anonymous], 1995, J. Math. Anal. Appl
[3]   A differential inequality for the isoperimetric profile [J].
Bayle, V .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (07) :311-342
[4]   A new isoperimetric comparison theorem for surfaces of variable curvature [J].
Benjamini, I ;
Cao, JG .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (02) :359-396
[5]  
Berger M., 1971, Lecture Notes in Mathematics, V194
[6]  
Bourgain J., 2009, AMER MATH SOC TRA SE, P27
[7]   Spectral stability of the Neumann Laplacian [J].
Burenkov, VI ;
Davies, EB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 186 (02) :485-508
[8]  
Cerdà J, 2012, INDIANA U MATH J, V61, P1925
[9]   MODIFIED ISOPERIMETRIC CONSTANTS, AND LARGE TIME HEAT DIFFUSION IN RIEMANNIAN-MANIFOLDS [J].
CHAVEL, I ;
FELDMAN, EA .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (03) :473-499
[10]  
Chavel I., 1984, PURE APPL MATH, V115