An Acer palmatum R2R3-MYB Gene, ApMYB77, Confers Freezing and Drought Tolerance in Arabidopsis thaliana

被引:4
作者
Zhu, Lu [1 ]
Li, Shushun [1 ]
Ma, Qiuyue [1 ]
Yan, Kunyuan [1 ]
Ren, Jie [2 ]
Chen, Zhu [2 ]
Wen, Jing [1 ]
Li, Qianzhong [1 ]
机构
[1] Jiangsu Acad Agr Sci, Inst Leisure Agr, 50 Zhongling St, Nanjing 210014, Jiangsu, Peoples R China
[2] Anhui Acad Agr Sci, Inst Agr Engn, 40 Nongke South Rd, Hefei 230031, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Acer palmatum; Transcriptome; ApMYB77; Freezing tolerance; Drought tolerance; MYB TRANSCRIPTION FACTOR; REGULATES COLD TOLERANCE; STRESS TOLERANCE; PLANT-RESPONSES; NEGATIVE REGULATOR; SALT STRESS; OVEREXPRESSION; ACCLIMATION; EXPRESSION; ACTIVATORS;
D O I
10.1007/s00344-022-10611-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Low temperature is one of the most prominent environmental factors affecting plant growth. As a deciduous arboreal tree, Acer palmatum has considerable ornamental and economic value; however, the molecular mechanisms underlying cold stress regulation in this species have yet to be determined. In this study, we performed Illumina high-throughput sequencing of 18 libraries obtained from A. palmatum subjected to cold treatment and subsequently identified a differentially expressed R2R3-MYB family gene, ApMYB77, which was then cloned and functionally characterized. The expression of ApMYB77 was induced by cold and drought treatments, and overexpression in A. thaliana enhanced the freezing tolerance (- 9 degrees C for 6 h) of transgenic plants compared with that of wild-type plants. The survival rates of transgenic plants (89% and 92%) were significantly higher than the wild-type plants (52%). Moreover, the transcript abundances of CBF-dependent regulatory pathway genes (AtCBF1, AtCBF2, AtCBF3, AtCBF4, AtCOR6.6A, AtCOR15B, AtCOR78, AtCOR414, and AtKIN1) were found to be significantly up-regulated in the transgenic lines. Enhanced abscisic acid (ABA)-dependent drought tolerance in transgenic plants was a further consequence of the overexpression of ApMYB77 following treatment of 15% polyethylene glycol for 4 d, compared with that in wild-type plants. In contrast, the expressions of genes (AtANAC072, AtDREB2A, AtERD1, AtMYB2, AtRD20, and AtRD29A) positively regulated by ABA were activated. Overall, the findings of this study indicate that ApMYB77 confers both freezing and drought tolerances.
引用
收藏
页码:1017 / 1030
页数:14
相关论文
共 50 条
  • [31] The soybean gene, GmMYBJ2, encodes a R2R3-type transcription factor involved in drought stress tolerance in Arabidopsis thaliana
    Lian-Tai Su
    Ying Wang
    De-Quan Liu
    Xiao-Wei Li
    Ying Zhai
    Xin Sun
    Xu-Yan Li
    Ya-Jing Liu
    Jing-Wen Li
    Qing-Yu Wang
    Acta Physiologiae Plantarum, 2015, 37
  • [32] VcMYB4a, an R2R3-MYB transcription factor from Vaccinium corymbosum, negatively regulates salt, drought, and temperature stress
    Zhang, Chun-Yu
    Liu, Hong-Chao
    Zhang, Xin-Sheng
    Guo, Qing-Xun
    Bian, Shao-Min
    Wang, Jing-Ying
    Zhai, Lu-Lu
    GENE, 2020, 757
  • [33] Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation
    Hui Zhou
    Kui Lin-Wang
    Wang, Furong
    Espley, Richard V.
    Ren, Fei
    Zhao, Jianbo
    Ogutu, Collins
    He, Huaping
    Jiang, Quan
    Allan, Andrew C.
    Han, Yuepeng
    NEW PHYTOLOGIST, 2019, 221 (04) : 1919 - 1934
  • [34] Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis
    Gao, Fei
    Yao, Huipeng
    Zhao, Haixia
    Zhou, Jing
    Luo, Xiaopeng
    Huang, Yunji
    Li, Chenglei
    Chen, Hui
    Wu, Qi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 109 : 387 - 396
  • [35] Characterization of the Poplar R2R3-MYB Gene Family and Over-Expression of PsnMYB108 Confers Salt Tolerance in Transgenic Tobacco
    Zhao, Kai
    Cheng, Zihan
    Guo, Qing
    Yao, Wenjing
    Liu, Huajing
    Zhou, Boru
    Jiang, Tingbo
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [36] R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple
    An, Jian-Ping
    Li, Rui
    Qu, Feng-Jia
    You, Chun-Xiang
    Wang, Xiao-Fei
    Hao, Yu-Jin
    PLANT JOURNAL, 2018, 96 (03) : 562 - 577
  • [37] Genome-Wide Characterization of the R2R3-MYB Gene Family in Diospyros oleifera
    Ji, Kang
    Liu, Cuiyu
    Wu, Kaiyun
    Yue, Zhihui
    Dong, Yi
    Gong, Bangchu
    Xu, Yang
    AGRICULTURE-BASEL, 2023, 13 (05):
  • [38] OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice
    Zheng, Jie
    Wu, Hao
    Zhao, Mingchao
    Yang, Zenan
    Zhou, Zaihui
    Guo, Yongmei
    Lin, Yongjun
    Chen, Hao
    MOLECULAR BREEDING, 2021, 41 (09)
  • [39] Systematic analysis of the R2R3-MYB transcription factor gene family in Stevia rebaudiana
    Xu, Xiaoyang
    Yang, Yongheng
    Zhang, Ting
    Zhang, Yongxia
    Tong, Haiying
    Yuan, Haiyan
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 210
  • [40] Characterization of a Wheat R2R3-MYB Transcription Factor Gene, TaMYB19, Involved in Enhanced Abiotic Stresses in Arabidopsis
    Zhang, Lichao
    Liu, Guoxiang
    Zhao, Guangyao
    Xia, Chuan
    Jia, Jizeng
    Liu, Xu
    Kong, Xiuying
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (10) : 1802 - 1812