Taking cues from machine learning, compartmental and time series models for SARS-CoV-2 omicron infection in Indian provinces

被引:0
|
作者
Yadav, Subhash Kumar [1 ]
Khan, Saif Ali [1 ]
Tiwari, Mayank [1 ]
Kumar, Arun [1 ]
Kumar, Vinit [2 ]
Akhter, Yusuf [3 ]
机构
[1] Babasaheb Bhimrao Ambedkar Univ, Sch Phys & Decis Sci, Dept Stat, Lucknow 226025, India
[2] Babasaheb Bhimrao Ambedkar Univ, Sch Informat Sci & Technol, Dept Lib & Informat Sci, Lucknow 226025, India
[3] Babasaheb Bhimrao Ambedkar Univ, Sch Life Sci, Dept Biotechnol, Lucknow 226025, India
关键词
Infectious disease; Disease modeling; Basic reproduction number; Infection rate; Recovery rate; Arima; Random forest; Distribution fitting; SIR EPIDEMIC MODEL; COVID-19; ARIMA; IMMUNITY;
D O I
10.1016/j.sste.2024.100634
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
SARS-CoV-2, the virus responsible for COVID-19, posed a significant threat to the world. We analyzed COVID-19 dissemination data in the top ten Indian provinces by infection incidences using the Susceptible-InfectiousRemoved (SIR) model, an Autoregressive Integrated Moving Average (ARIMA) time series model, a machine learning model based on the Random Forest, and distribution fitting. Outbreaks are expected to continue if the Basic Reproduction Number (R-0 ) > 1, and infection waves are anticipated to end if the R-0 < 1, as determined by the SIR model. Different parametric probability distributions are also fitted. Data collected from December 12, 2021, to March 31, 2022, encompassing data from both before and during the implementation of strict control measures. Based on the estimates of the model parameters, health agencies and government policymakers can develop strategies to combat the spread of the disease in the future, and the most effective technique can be recommended for real-world application for other outbreaks of COVID-19. The best method out of these could be also implemented further on the epidemiological data of other similar infectious agents.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Machine Learning Models Identify Inhibitors of SARS-CoV-2
    Gawriljuk, Victor O.
    Zin, Phyo Phyo Kyaw
    Puhl, Ana C.
    Zorn, Kimberley M.
    Foil, Daniel H.
    Lane, Thomas R.
    Hurst, Brett
    Tavella, Tatyana Almeida
    Maranhao Costa, Fabio Trindade
    Lakshmanane, Premkumar
    Bernatchez, Jean
    Godoy, Andre S.
    Oliva, Glaucius
    Siqueira-Neto, Jair L.
    Madrid, Peter B.
    Ekins, Sean
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (09) : 4224 - 4235
  • [2] SARS-CoV-2 dual infection with Delta and Omicron variants in an
    Abroi, Aare
    Talas, Ulvi Gerst
    Pauskar, Merit
    Shablinskaja, Arina
    Reisberg, Tuuli
    Niglas, Heiki
    Pall, Taavi
    Nelis, Mari
    Tagen, Ingrid
    Soodla, Pilleriin
    Lutsar, Irja
    Huik, Kristi
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 124 : 41 - 44
  • [3] Myeloencephalitis as the only presentation of Omicron SARS-CoV-2 infection
    Dang, Tinh Quang
    La, Duc Thien
    Tran, Tai Ngoc
    BMJ CASE REPORTS, 2022, 15 (11)
  • [4] Omicron Variant of SARS-CoV-2: An Indian Perspective of Vaccination and Management
    Chavda, Vivek P.
    Balar, Pankti
    Vaghela, Dixa
    Solanki, Hetvi K.
    Vaishnav, Akta
    Hala, Vivek
    Vora, Lalitkumar
    VACCINES, 2023, 11 (01)
  • [5] A machine learning tool for the diagnosis of SARS-CoV-2 infection from hemogram parameters
    Gomez-Rojas, S.
    Segura, G. Perez
    Olle, J.
    Gomez-Tarragona, G. Carreno
    Medina, J. Gonzalez
    Aguado, J. M.
    Guerrero, E. Vera
    Santaella, M. Poza
    Martinez-Lopez, J.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (22) : 3423 - 3430
  • [6] Experimental Models for SARS-CoV-2 Infection
    Kim, Taewoo
    Lee, Jeong Seok
    Ju, Young Seok
    MOLECULES AND CELLS, 2021, 44 (06) : 377 - 383
  • [7] SARS-CoV-2 epidemic calculation in Italy by SEIR compartmental models
    Battineni, Gopi
    Chintalapudi, Nalini
    Amenta, Francesco
    APPLIED COMPUTING AND INFORMATICS, 2024, 20 (3/4) : 251 - 261
  • [8] Experimental Models for SARS-CoV-2 Infection
    Kim, Taewoo
    Lee, Jeong Seok
    Ju, Young Seok
    MOLECULES AND CELLS, 2021, 44 (07) : 377 - 383
  • [9] Machine Learning for Prediction of Patients on Hemodialysis with an Undetected SARS-CoV-2 Infection
    Monaghan, Caitlin K.
    Larkin, John W.
    Chaudhuri, Sheetal
    Han, Hao
    Jiao, Yue
    Bermudez, Kristine M.
    Weinhandl, Eric D.
    Dahne-Steuber, Ines A.
    Belmonte, Kathleen
    Neri, Luca
    Kotanko, Peter
    Kooman, Jeroen P.
    Hymes, Jeffrey L.
    Kossmann, Robert J.
    Usvyat, Len A.
    Maddux, Franklin W.
    KIDNEY360, 2021, 2 (03): : 456 - 468
  • [10] TMPRSS2 Is Essential for SARS-CoV-2 Beta and Omicron Infection
    Metzdorf, Kristin
    Jacobsen, Henning
    Greweling-Pils, Marina C.
    Hoffmann, Markus
    Lueddecke, Tatjana
    Miller, Felicitas
    Melcher, Lars
    Kempf, Amy M.
    Nehlmeier, Inga
    Bruder, Dunja
    Widera, Marek
    Ciesek, Sandra
    Poehlmann, Stefan
    Cicin-Sain, Luka
    VIRUSES-BASEL, 2023, 15 (02):