Sunspots Identification Through Mathematical Morphology

被引:5
作者
Bourgeois, Slava [1 ,2 ]
Barata, Teresa [3 ]
Erdelyi, Robertus [2 ,4 ,5 ]
Gafeira, Ricardo [1 ]
Oliveira, Orlando [6 ]
机构
[1] Univ Coimbra, Dept Phys, Inst Astrofis & Ciencias Espaco, Coimbra, Portugal
[2] Univ Sheffield, Solar Phys & Space Plasma Res Ctr SP2RC, Sch Math & Stat, Hicks Bldg,Hounsfield Rd, Sheffield, England
[3] Univ Coimbra, Inst Astrofis & Ciencias Espaco, Dept Earth Sci, Coimbra, Portugal
[4] Eotvos Lorand Univ, Dept Astron, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[5] Hungarian Solar Phys Fdn HSPF, Gyula Bay Zoltan Solar Observ GSO, Petofi Ter 3, H-5700 Gyula, Hungary
[6] Univ Coimbra, Dept Phys, CFisUC, P-3004516 Coimbra, Portugal
基金
英国科学技术设施理事会;
关键词
Solar cycle; Observations; Magnetic fields; Photosphere; Sunspots; Statistics; Integrated sun observations; SOLAR; FLARES;
D O I
10.1007/s11207-023-02243-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The implementation of automated methods for sunspot detection is essential to obtain better objectivity, efficiency, and accuracy in identifying sunspots and analysing their morphological properties. A desired application is the contouring of sunspots. In this work, we construct sunspot contours from Solar Dynamics Observatory (SDO)/ Helioseismic and Magnetic Imager intensity images by means of an automated method based on development and application of mathematical morphology. The method is validated qualitatively - the resulting contours accurately delimit sunspots. Here, it is applied to high-resolution data (SDO intensitygrams) and validated quantitatively by illustrating a good agreement between the measured sunspot areas and the ones provided by two standard reference catalogues. The method appears to be robust for sunspot identification, and our analysis suggests its application to more complex and irregular-shaped solar structures, such as polarity inversion lines inside delta-sunspots.
引用
收藏
页数:21
相关论文
共 58 条
[1]  
[Anonymous], 1967, Elements pour une Theorie des Milieux poreux
[2]  
Baranyi T., 2016, Heritage of Konkoly's solar observations: the Debrecen photoheliograph programme and the Debrecen sunspot databases
[3]  
Barata T., 2018, Software tool for automatic detection of solar plages in the Coimbra observatory spectroheliograms
[4]   Forecasting Solar Cycle 25 Using Deep Neural Networks [J].
Benson, B. ;
Pan, W. D. ;
Prasad, A. ;
Gary, G. A. ;
Hu, Q. .
SOLAR PHYSICS, 2020, 295 (05)
[5]   Comparison of automatic methods to detect sunspots in the Coimbra Observatory spectroheliograms [J].
Carvalho, S. ;
Gomes, S. ;
Barata, T. ;
Lourenco, A. ;
Peixinho, N. .
ASTRONOMY AND COMPUTING, 2020, 32
[6]   On the brightness of the inner edge of the penumbra in sun-spots (second note) [J].
Chevalier, S .
ASTROPHYSICAL JOURNAL, 1907, 25 (04) :273-276
[7]  
Chola C., 2022, Glob. Transit. Proc, V3, DOI [10.1016/j.gltp.2022.03.017, DOI 10.1016/J.GLTP.2022.03.017]
[8]   Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory [J].
Couvidat, S. ;
Schou, J. ;
Hoeksema, J. T. ;
Bogart, R. S. ;
Bush, R. I. ;
Duvall, T. L., Jr. ;
Liu, Y. ;
Norton, A. A. ;
Scherrer, P. H. .
SOLAR PHYSICS, 2016, 291 (07) :1887-1938
[9]   Automatic sunspots detection on full-disk solar images using mathematical morphology [J].
Curto, J. J. ;
Blanca, M. ;
Martinez, E. .
SOLAR PHYSICS, 2008, 250 (02) :411-429
[10]  
De Jager C., 1963, Bull. Astron. Inst. Neth, V17, P253