Exploring the mechanism of action of total glucosides of paeony against autoimmune thyroiditis based on network pharmacology and molecular docking

被引:2
|
作者
Su, Jin [1 ]
Dong, Youqing [1 ]
Yu, Xinran [1 ]
Zhang, Limin [1 ]
Li, Wen [1 ,2 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Guiyang, Guizhou, Peoples R China
[2] Guizhou Univ Tradit Chinese Med, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
autoimmune thyroiditis; mechanism of action; molecular docking; network pharmacology; total glucosides of paeony; PAEONIFLORIN;
D O I
10.1097/MD.0000000000036290
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The objective of this study is to explore the potential mechanism of action of Total glucosides of paeony (TGP) in the treatment of autoimmune thyroiditis (AIT). The study utilized literature mining to obtain the active ingredients of TGP. Databases such as Super-PRED, similarity ensemble approach, and Swiss Target Prediction were utilized to predict the targets of the active ingredients. DisGeNET, Dangbank, GeneCards, online mendelian inheritance in man, and Pharmgkb databases were used to obtain the targets related to AIT. The Venn Online tool was used to screen the intersecting genes between the active ingredients and AIT targets. The STRING database was employed to analyze protein protein interaction. Gene ontology bio-enrichment and Kyoto encyclopedia of genes and genomes enrichment of common targets were analyzed using R language. Finally, molecular docking was performed using AutoDockTools-1.5.6 software for validation. The study identified 5 active ingredients of TGP, 283 ingredient targets, 7120 disease targets, 220 intersecting targets, 30 entries for gene ontology analysis, and 30 pathways for Kyoto encyclopedia of genes and genomes analysis. The important targets of the protein protein interaction network were identified as interleukin-6, proto-oncogene tyrosine-protein kinase, epidermal growth factor receptor, among others. The molecular docking validation results showed that Paeoniflorin, albiflorin, and benzoylpaeoniflorin and oxypaeoniflor all bind well to interleukin-6, epidermal growth factor receptor, and proto-oncogene tyrosine-protein kinase. This study reveals the multi-component, multi-target and multi-pathway mechanism of action of TGP in regulating AIT and provides a reference for subsequent basic research.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Exploring the Mechanism of Danshen against Myelofibrosis by Network Pharmacology and Molecular Docking
    Li, Jie
    Ma, Xiaoran
    Liu, Cun
    Li, Huayao
    Zhuang, Jing
    Gao, Chundi
    Zhou, Chao
    Liu, Lijuan
    Wang, Kejia
    Sun, Changgang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [2] Exploring the Mechanism of Antioxidant Action of Bitter Almond Based on Network Pharmacology and Molecular Docking Techniques
    Feng, Xuehua
    Niu, Jingya
    Song, Zurong
    Tao, Ali
    Zong, Rumin
    Pei, Wenqing
    Gong, Panpan
    JOURNAL OF FOOD QUALITY, 2023, 2023
  • [3] Exploring the mechanism of action of Phyllanthus emblica in the treatment of epilepsy based on network pharmacology and molecular docking
    Xiao, Longfei
    Chen, Wenjun
    Guo, Wenlong
    Li, Hailin
    Chen, Rong
    Chen, Qinghua
    MEDICINE, 2025, 104 (07)
  • [4] Exploring the potential pharmacological mechanism of aripiprazole against hyperprolactinemia based on network pharmacology and molecular docking
    Yang, Lei
    Zhang, Qiuyu
    Li, Chao
    Tian, Hongjun
    Zhuo, Chuanjun
    SCHIZOPHRENIA, 2024, 10 (01)
  • [5] Exploring the Mechanism of Curcumin on Retinoblastoma Based on Network Pharmacology and Molecular Docking
    Wu, Chengfu
    Zheng, Wenli
    Zhang, Jifa
    He, Xingping
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [6] Exploring the targets and molecular mechanism of glycyrrhetinic acid against diabetic nephropathy based on network pharmacology and molecular docking
    Meng, Fan-Di
    Yuan, Ling
    Xu, Duo-Jie
    Che, Meng-Ying
    Hou, Shao-Zhang
    Lu, Dou-Dou
    Liu, Wen-Jing
    Nan, Yi
    WORLD JOURNAL OF DIABETES, 2023, 14 (11) : 1672 - 1692
  • [7] Targets of total glucosides of paeony in the treatment of Sjogren syndrome: A network pharmacology study
    Xiao, Lu
    Xiao, Wei
    Zhan, Feng
    JOURNAL OF THE CHINESE MEDICAL ASSOCIATION, 2023, 86 (04) : 375 - 380
  • [8] Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification
    He, Shasha
    He, Xuhua
    Pan, Shujuan
    Jiang, Wenwen
    MOLECULES, 2023, 28 (18):
  • [9] Exploring the mechanism of Tripterygium wilfordii against cancer using network pharmacology and molecular docking
    Xiao, Shui-Xiu
    Li, Shao-Jin
    Fang, Wan-Xian
    Chen, Jv
    Li, Hai-Jian
    Situ, Yong-Li
    WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE, 2022, 8 (03) : 417 - 425
  • [10] Exploring the Mechanism of Tripterygium wilfordii Against Cancer Using Network Pharmacology and Molecular Docking
    Shui-Xiu Xiao
    Shao-Jin Li
    Wan-Xian Fang
    Jv Chen
    Hai-Jian Li
    Yong-Li Situ
    WorldJournalofTraditionalChineseMedicine, 2022, 8 (03) : 417 - 425