Performance Improvement in a Linear Primary Permanent Magnet Vernier Machine by Modular Unit Shift Effect

被引:14
作者
Ling, Zhijian [1 ,2 ]
Zhao, Wenxiang [1 ,2 ]
Ji, Jinghua [1 ,2 ]
Xu, Meimei [1 ,2 ]
Sun, Yuhua [1 ,2 ]
Hu, Qingze [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Natl Ctr Int Res Struct Hlth Management Crit Comp, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation; Force; Windings; Air gaps; Topology; Magnetic fields; Stator windings; Linear machine; modular design; performance improvement; permanent magnet (PM); INDUCTION-MOTOR; DESIGN;
D O I
10.1109/TTE.2023.3242825
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article investigates the effects of modular unit shift on the detent force and mutual-to-self-inductance ratio in the modular linear primary permanent magnet Vernier (MLPPMV) machine. First, the winding connection and slot/pole combinations for the modular design are discussed. Then, the relationship of the phase shift and modular unit spacing is given. The operation principle of the MLPPMV machine is analyzed from the perspective of the air-gap field modulation theory. Moreover, the analytical expressions of the modular unit shift and phase shift angle for the MLPPMV machine are derived. Afterward, the back EMFs, detent forces, and inductances are comparatively analyzed. The investigation reveals that the reasonable modular unit shift has significance to improve the electromagnetic performances. Furthermore, the finite-element method is adopted to evaluate. Finally, a prototype of MLPPMV machine is built. Experiments are carried out on a linear test bench, verifying the theoretical analysis.
引用
收藏
页码:4562 / 4570
页数:9
相关论文
共 24 条
[1]   Linear Electric Machines, Drives, and MAGLEVs: An Overview [J].
Boldea, Ion ;
Tutelea, Lucian Nicolae ;
Xu, Wei ;
Pucci, Marcello .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (09) :7504-7515
[2]   Comparison Between Linear Induction Motor and Linear Flux-Switching Permanent-Magnet Motor for Railway Transportation [J].
Cao, Ruiwu ;
Lu, Minghang ;
Jiang, Ning ;
Cheng, Ming .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) :9394-9405
[3]   General Airgap Field Modulation Theory for Electrical Machines [J].
Cheng, Ming ;
Han, Peng ;
Hua, Wei .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (08) :6063-6074
[4]   Thrust Ripple Reduction in Linear Switched-Flux Machines via Additional Pole Optimisation [J].
Eguren, Imanol ;
Almandoz, Gaizka ;
Egea, Aritz ;
Zarate, Sergio ;
Urdangarin, Ander .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (03) :1655-1665
[5]   A Quantitative Air-Gap Construction Method to Maximize Torque of Vernier PM Machines [J].
Fang, Li ;
Li, Dawei ;
Ren, Xiang ;
Qu, Ronghai .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (01) :463-473
[6]   Modular Seven-Leg Switched Reluctance Motor Drive With Flexible Winding Configuration and Fault-Tolerant Capability [J].
Gan, Chun ;
Li, Xue ;
Yu, Zhiyue ;
Ni, Kai ;
Wang, Shuanghong ;
Qu, Ronghai .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2023, 9 (02) :2711-2722
[7]   Investigation on Winding Theory for Short Primary Linear Machines [J].
Ge, Jian ;
Xu, Wei ;
Liu, Yi ;
Xiong, Fei ;
Li, Dayi .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) :7400-7412
[8]   Secondary Eddy Current Losses Reduction in a Double-Sided Long-Primary Fractional Slot Concentrated Winding Permanent Magnet Linear Synchronous Motor [J].
Ge, Qingwen ;
Kou, Baoquan ;
Zhang, Haoquan ;
Shao, Yi ;
Huang, Changchuang ;
Niu, Xu .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (05) :5018-5029
[9]   Design and Optimization of a High-Torque-Density Low-Torque-Ripple Vernier Machine Using Ferrite Magnets for Direct-Drive Applications [J].
Gong, Cheng ;
Deng, Fang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (06) :5421-5431
[10]   Analysis of a Tubular Linear Permanent Magnet Oscillator With Auxiliary Teeth Configuration for Energy Conversion System [J].
Guo, Rong ;
Yu, Haitao ;
Guo, Baocheng .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2020, 6 (02) :602-611