Anti-freezing conductive zwitterionic composite hydrogels for stable multifunctional sensors

被引:16
|
作者
Zhang, Zeyu [1 ]
Raffa, Patrizio [1 ]
机构
[1] Univ Groningen, Engn & Technol Inst Groningen ENTEG, Fac Sci & Engn, Smart & Sustainable Polymer Prod, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
关键词
Zwitterionic hydrogels; Conductive polymers; Anti-freezing properties; Strain sensors; Pressure sensors;
D O I
10.1016/j.eurpolymj.2023.112484
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Zwitterionic conductive hydrogels have shown potential application in wearable strain and pressure sensors. However, there are still fundamental challenges to achieve zwitterionic hydrogels with excellent mechanical properties, able to keep flexibility at sub-zero temperatures. To overcome these limitations, a zwitterionic conductive hydrogel was fabricated in this work by in-situ polymerization of aniline (ANI) monomer in a copolymer of sulfobetaine methacrylate (SBMA) and acrylic acid (AA) matrix. The obtained hydrogel possesses outstanding anti-freezing performance (without obvious loss of stretchability at-18 degrees C) and water-retaining properties, due to the introduction of LiCl on the zwitterionic polymer matrix. The synergy of chemical and physical crosslinking between poly (SBMA-co-AA) and polyaniline (PANI) networks enhance the mechanical performance of the zwitterionic hydrogel, that exhibits a fracture tensile strength of 470 kPa, and a fracture strain up to 600 %. Additionally, the integration of PANI confers stable conductivity (2.23 S m-1, maintained at 1.89 S m-1 even at-18 degrees C), high sensitivity (GF = 1.74), and short response and recovery times (223 ms and 191 ms, respectively). The hydrogel can be applied as a flexible sensor to accurately detect various human motions. This work provides a feasible strategy for developing wearable multifunctional sensors in a wide working temperature range.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ionic conductive amylopectin hydrogels for biocompatible and anti-freezing wearable sensors
    Dai, Rujun
    Gao, Yiyan
    Sun, Yibo
    Shi, Kai
    Gao, Guanghui
    Zhang, Huixuan
    EUROPEAN POLYMER JOURNAL, 2023, 200
  • [2] Tough, anti-freezing and conductive ionic hydrogels
    Wu, Shuwang
    Wang, Ta-Wei
    Du, Yingjie
    Yao, Bowen
    Duan, Sidi
    Yan, Yichen
    Hua, Mutian
    Alsaid, Yousif
    Zhu, Xinyuan
    He, Ximin
    NPG ASIA MATERIALS, 2022, 14 (01)
  • [3] Tough, anti-freezing and conductive ionic hydrogels
    Shuwang Wu
    Ta-Wei Wang
    Yingjie Du
    Bowen Yao
    Sidi Duan
    Yichen Yan
    Mutian Hua
    Yousif Alsaid
    Xinyuan Zhu
    Ximin He
    NPG Asia Materials, 2022, 14
  • [4] Ionic conductive soluble starch hydrogels for biocompatible and anti-freezing wearable sensors
    Zhang, Xi
    Zhang, Xiuhang
    Kong, Xiangli
    Zhou, Xin
    Gao, Yiyan
    Wang, YaJun
    Gao, Guanghui
    Qu, Wenrui
    Shi, Kai
    EUROPEAN POLYMER JOURNAL, 2024, 210
  • [5] Cellulose nanocrystal reinforced conductive hydrogels with anti-freezing properties for strain sensors
    Zheng, Jiawen
    Sun, Yong
    Yang, Shuliang
    Li, Zheng
    Tang, Xing
    Zeng, Xianhai
    Lin, Lu
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (43) : 20900 - 20908
  • [6] Anti-freezing multifunctional conductive hydrogels: from structure design to flexible electronic devices
    Xu, Chao
    Yang, Kexin
    Zhu, Guoyin
    Ou, Changjin
    Jiang, Jing
    Zhuravlev, Evgeny
    Zhang, Yizhou
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (02) : 381 - 403
  • [7] Self-Adhesive, Anti-Freezing Multifunctional Zwitterionic Hydrogels with Lignin-Promoted Rapid Gelation for Flexible Strain Sensors
    He, Yutong
    Sun, Shaochao
    Zhang, Xinxu
    Xu, Ying
    Zhang, Chen
    Shao, Changyou
    Yang, Jun
    Wen, Jialong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (31): : 11809 - 11820
  • [8] Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors
    Zhang, Wei
    Wen, Jing-Yun
    Ma, Ming-Guo
    Li, Ming-Fei
    Peng, Feng
    Bian, Jing
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 555 - 566
  • [9] Highly conductive and anti-freezing cellulose hydrogel for flexible sensors
    Shu, Lian
    Wang, Zhongguo
    Zhang, Xiong-Fei
    Yao, Jianfeng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 230
  • [10] Ultra-stretchable, anti-freezing conductive hydrogels crosslinked by strong hydrogen bonding for flexible sensors
    Du, Ying
    Sun, Yuanna
    Lu, Shuaishuai
    Zhang, Kaiyuan
    Song, Chen
    Li, Boyang
    He, Xinhai
    Li, Qingshan
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (18) : 2733 - 2740