Solution of logarithmic coefficients conjectures for some classes of convex functions

被引:6
作者
Adegani, Ebrahim Analouei [1 ]
Bulboaca, Teodor [2 ]
Mohammed, Nafya Hameed [3 ]
Zaprawa, Pawel [4 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 316-36155, Shahrood, Iran
[2] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[3] Univ Raparin, Coll Basic Educ, Dept Math, Ranya, Kurdistan Regio, Iraq
[4] Lublin Univ Technol, Fac Mech Engn, Dept Math, Lublin, Poland
关键词
Univalent functions; starlike and convex functions of some order; Faber polynomial; subordination; logarithmic coefficients; UNIVALENT; SUBCLASS;
D O I
10.1515/ms-2023-0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions, J. Funct. Spaces 2021 (2021), Art. ID 6690027], Alimohammadi et al. presented a few conjectures for the logarithmic coefficients gamma(n) of the functions f belonging to some well-known classes like C(1 + alpha z) for alpha is an element of (0, 1], and CVhpl(1/2). For example, it is conjectured that if the function f is an element of C(1 + alpha z), then the logarithmic coefficients of f satisfy the inequalities|gamma(n)| <= alpha /2n(n+ 1), n is an element of N.Equality is attained for the function L-alpha,L-n, that is,log L-alpha,L-n(z)/z =2 sigma(infinity)(n=1) gamma(n)(L-alpha,L-n)z(n )= alpha/n(n + 1) z(n)+ ..., z is an element of U.The aim of this paper is to confirm that these conjectures hold for the coefficient gamma(n0-1) whenever the function f has the form f(z) = z + sigma(infinity)(k=n0) a(k)z(k), z is an element of U for some n(0) is an element of N, n(0) >= 2.(c) 2023 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:79 / 88
页数:10
相关论文
共 33 条
[1]   Sufficient Condition for p-Valent Strongly Starlike Functions [J].
Adegani, E. A. ;
Bulboaca, T. ;
Motamednezhad, A. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2020, 55 (04) :213-223
[2]   Coefficient bounds for certain two subclasses of bi-univalent functions [J].
Adegani, Ebrahim Analouei ;
Cho, Nak Eun ;
Alimohammadi, Davood ;
Motamednezhad, Ahmad .
AIMS MATHEMATICS, 2021, 6 (09) :9126-9137
[3]   Logarithmic Coefficients for Univalent Functions Defined by Subordination [J].
Adegani, Ebrahim Analouei ;
Cho, Nak Eun ;
Jafari, Mostafa .
MATHEMATICS, 2019, 7 (05)
[4]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[5]   ON LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS [J].
Ali, Md Firoz ;
Vasudevarao, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) :1131-1142
[6]   Successive coefficients of functions in classes defined by subordination [J].
Alimohammadi, Davood ;
Adegani, Ebrahim Analouei ;
Bulboaca, Teodor ;
Cho, Nak Eun .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)
[7]   Logarithmic Coefficient Bounds and Coefficient Conjectures for Classes Associated with Convex Functions [J].
Alimohammadi, Davood ;
Adegani, Ebrahim Analouei ;
Bulboaca, Teodor ;
Cho, Nak Eun .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[8]   Logarithmic Coefficients for Classes Related to Convex Functions [J].
Alimohammadi, Davood ;
Adegani, Ebrahim Analouei ;
Bulboaca, Teodor ;
Cho, Nak Eun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) :2659-2673
[9]   Argument and Coefficient Estimates for Certain Analytic Functions [J].
Alimohammadi, Davood ;
Cho, Nak Eun ;
Adegani, Ebrahim Analouei ;
Motamednezhad, Ahmad .
MATHEMATICS, 2020, 8 (01)
[10]  
Analouei Adegani E, 2019, GAZI U J SCI, V32, P637