Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries

被引:160
作者
Kim, Mun Sek [1 ]
Zhang, Zewen [3 ]
Wang, Jingyang [3 ]
Oyakhire, Solomon T. [4 ]
Kim, Sang Cheol [3 ]
Yu, Zhiao [1 ]
Chen, Yuelang [1 ]
Boyle, David T. [1 ]
Ye, Yusheng [1 ]
Huang, Zhuojun [1 ]
Zhang, Wenbo [3 ]
Xu, Rong [3 ]
Sayavong, Philaphon [1 ]
Bent, Stacey F. [4 ]
Qin, Jian [4 ]
Bao, Zhenan [4 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Dept Energy Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
lithium-metal battery; lithium metal anode; suspension electrolyte; lithium nitride; solid-electrolyte interphase; lithium solvation environment; electrolyte engineering; LIQUID; ENERGY; ELECTRODEPOSITION; INTERPHASES; INTERFACES; EFFICIENCY; GROWTH;
D O I
10.1021/acsnano.2c12470
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inorganic-rich solid-electrolyte interphases (SEIs) on Li metal anodes improve the electrochemical performance of Li metal batteries (LMBs). Therefore, a fundamental understanding of the roles played by essential inorganic compounds in SEIs is critical to realizing and developing high-performance LMBs. Among the prevalent SEI inorganic compounds observed for Li metal anodes, Li3N is often found in the SEIs of high-performance LMBs. Herein, we elucidate new features of Li3N by utilizing a suspension electrolyte design that contributes to the improved electrochemical performance of the Li metal anode. Through empirical and computational studies, we show that Li3N guides Li electrodeposition along its surface, creates a weakly solvating environment by decreasing Li+-solvent coordination, induces organic-poor SEI on the Li metal anode, and facilitates Li+ transport in the electrolyte. Importantly, recognizing specific roles of SEI inorganics for Li metal anodes can serve as one of the rational guidelines to design and optimize SEIs through electrolyte engineering for LMBs.
引用
收藏
页码:3168 / 3180
页数:13
相关论文
共 59 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   LI3N - PROMISING LI IONIC CONDUCTOR [J].
ALPEN, UV .
JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (03) :379-392
[3]   Effect of standard light illumination on electrolyte's stability of lithium-ion batteries based on ethylene and di-methyl carbonates [J].
Bouteau, Gaspard ;
Van-Nhien, Albert Nguyen ;
Sliwa, Michel ;
Sergent, Nicolas ;
Lepretre, Jean-Claude ;
Gachot, Gregory ;
Sagaidak, Iryna ;
Sauvage, Frederic .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Corrosion of lithium metal anodes during calendar ageing and its microscopic origins [J].
Boyle, David T. ;
Huang, William ;
Wang, Hansen ;
Li, Yuzhang ;
Chen, Hao ;
Yu, Zhiao ;
Zhang, Wenbo ;
Bao, Zhenan ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (05) :487-494
[5]   Transient Voltammetry with Ultramicroelectrodes Reveals the Electron Transfer Kinetics of Lithium Metal Anodes [J].
Boyle, David T. ;
Kong, Xian ;
Pei, Allen ;
Rudnicki, Paul E. ;
Shi, Feifei ;
Huang, William ;
Bao, Zhenan ;
Qin, Jian ;
Cui, Yi .
ACS ENERGY LETTERS, 2020, 5 (03) :701-709
[6]   Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes [J].
Chen, Ke ;
Pathak, Rajesh ;
Gurung, Ashim ;
Adhamash, Ezaldeen A. ;
Bahrami, Behzad ;
He, Qingquan ;
Qiao, Hui ;
Smirnova, Alevtina L. ;
Wu, James J. ;
Qiao, Qiquan ;
Zhou, Yue .
ENERGY STORAGE MATERIALS, 2019, 18 :389-396
[7]   Nanodiamonds suppress the growth of lithium dendrites [J].
Cheng, Xin-Bing ;
Zhao, Meng-Qiang ;
Chen, Chi ;
Pentecost, Amanda ;
Maleski, Kathleen ;
Mathis, Tyler ;
Zhang, Xue-Qiang ;
Zhang, Qiang ;
Jiang, Jianjun ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2017, 8
[8]   Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method [J].
Enkovaara, J. ;
Rostgaard, C. ;
Mortensen, J. J. ;
Chen, J. ;
Dulak, M. ;
Ferrighi, L. ;
Gavnholt, J. ;
Glinsvad, C. ;
Haikola, V. ;
Hansen, H. A. ;
Kristoffersen, H. H. ;
Kuisma, M. ;
Larsen, A. H. ;
Lehtovaara, L. ;
Ljungberg, M. ;
Lopez-Acevedo, O. ;
Moses, P. G. ;
Ojanen, J. ;
Olsen, T. ;
Petzold, V. ;
Romero, N. A. ;
Stausholm-Moller, J. ;
Strange, M. ;
Tritsaris, G. A. ;
Vanin, M. ;
Walter, M. ;
Hammer, B. ;
Hakkinen, H. ;
Madsen, G. K. H. ;
Nieminen, R. M. ;
Norskov, J. K. ;
Puska, M. ;
Rantala, T. T. ;
Schiotz, J. ;
Thygesen, K. S. ;
Jacobsen, K. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (25)
[9]   Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries [J].
Eshetu, Gebrekidan Gebresilassie ;
Judez, Xabier ;
Li, Chunmei ;
Bondarchuk, Oleksandr ;
Rodriguez-Martinez, Lide M. ;
Zhang, Heng ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (48) :15368-15372
[10]   Insights on "nitrate salt" in lithium anode for stabilized solid electrolyte interphase [J].
Fu, Lin ;
Wang, Xiancheng ;
Chen, Zihe ;
Li, Yuanjian ;
Mao, Eryang ;
Seh, Zhi Wei ;
Sun, Yongming .
CARBON ENERGY, 2022, 4 (01) :12-20