On some extensions of dynamic Hardy-type inequalities on time scales

被引:0
作者
Mohamed, Karim A. [1 ]
El-Owaidy, Hassan M. [1 ]
El-Deeb, Ahmed A. [1 ]
Rezk, M. [1 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Cairo 11884, Egypt
来源
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS | 2023年 / 30卷 / 02期
关键词
Delta derivative; Hardy?s inequality; Ho?lder?s inequality; time scales;
D O I
10.22436/jmcs.030.02.06
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this paper is to establish a new class of dynamic inequalities of the Hardy type which generalize and improve some recent results given in the literature, and we derive some new weighted Hardy type integral inequalities on the time scale.
引用
收藏
页码:150 / 167
页数:18
相关论文
共 10 条
[1]  
Agarwal R. P., 2016, Hardy type inequalities on time scales
[2]   On some new Hardy-type inequalities [J].
Benaissa, Bouharket ;
Sarikaya, Mehmet Zeki ;
Senouci, Abdelkader .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) :8488-8495
[3]  
Bohner M., 2001, Dynamic equations on time scales, P2
[4]   On some new double dynamic inequalities associated with Leibniz integral rule on time scales [J].
El-Deeb, A. A. ;
Rashid, Saima .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[5]  
Hardy G. H., 1928, Messenger Math., V57, P12
[6]  
Hardy G. H., 1925, Messenger Math., V54, P150
[7]  
Hardy GH, 1926, J REINE ANGEW MATH, V157, P141
[8]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[9]   Hardy inequality on time scales and its application to half-linear dynamic equations [J].
Rehák, Pavel .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2005, 2005 (05) :495-507
[10]   Hardy and Littlewood Inequalities on Time Scales [J].
Saker, S. H. ;
O'Regan, Donal .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) :527-543