Frequency-Oriented Efficient Transformer for All-in-One Weather-Degraded Image Restoration

被引:35
作者
Gao, Tao [1 ]
Wen, Yuanbo [1 ]
Zhang, Kaihao [2 ]
Zhang, Jing [2 ]
Chen, Ting [1 ]
Liu, Lidong [1 ]
Luo, Wenhan [3 ]
机构
[1] Changan Univ, Sch Informat Engn, Xian 710064, Peoples R China
[2] Australian Natl Univ, Sch Comp, Canberra, ACT 2601, Australia
[3] Sun Yat sen Univ, Sch Cyber Sci & Technol, Shenzhen Campus, Shenzhen 518107, Guangdong, Peoples R China
关键词
Computer vision; image restoration; adverse weather removal; frequency-oriented transformer; RAINDROP REMOVAL; NETWORK; MODEL;
D O I
10.1109/TCSVT.2023.3299324
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Adverse weather conditions, such as rain, raindrop, snow and haze, consistently degrade images in an unpredictable manner, thereby rendering existing task-specific and task-aligned methods inadequate in addressing this formidable problem. To this end, we investigate the application of Transformer in image restoration and introduce an efficient frequency-oriented method called AIRFormer, which is designed to restore weather-degraded images comprehensively and holistically. Specifically, we identify that the initial self-attention mechanism exhibits distinctive properties akin to a low-pass filter. Therefore, we construct a frequency-guided Transformer encoder by incorporating wavelet-based prior information to guide the extraction of image features. Additionally, considering the non-specific frequency characteristics of self-attention in the later stages, we develop a frequency-refined Transformer decoder that incorporates learnable task-specific queries across spatial dimensions, channel dimensions, and wavelet domains. To facilitate the training of our proposed method, we curate a comprehensive benchmark dataset named AIR40K that, encompasses a wide range of challenging scenarios. Extensive experimental evaluations demonstrate the superiority of our AIRFormer over both task-aligned and all-in-one methods across 15 publicly available datasets. Notably, AIRFormer achieves the best trade-off between the inference time and quality of reconstructed image, comparing with existing methods such as TransWeather and Restormer. The source code, dataset and pre-trained models will be available at https://github.com/chdwyb/AIRFormer.
引用
收藏
页码:1886 / 1899
页数:14
相关论文
共 107 条
[1]   NTIRE 2021 NonHomogeneous Dehazing Challenge Report [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Vasluianu, Florin-Alexandru ;
Timofte, Radu ;
Fu, Minghan ;
Liu, Huan ;
Yu, Yankun ;
Chen, Jun ;
Wang, Keyan ;
Chang, Jerome ;
Wang, Xiyao ;
Liu, Jing ;
Xu, Yi ;
Zhang, Xinjian ;
Zhao, Minyi ;
Zhou, Shuigeng ;
Chen, Tianyi ;
Fu, Jiahui ;
Jiang, Wentao ;
Gao, Chen ;
Liu, Si ;
Wang, Yudong ;
Guo, Jichang ;
Li, Chongyi ;
Yan, Qixin ;
Zheng, Sida ;
Zamir, Syed Waqas ;
Arora, Aditya ;
Dudhane, Akshay ;
Khan, Salman ;
Hayat, Munawar ;
Khan, Fahad Shahbaz ;
Shao, Ling ;
Zhang, Haichuan ;
Guo, Tiantong ;
Monga, Vishal ;
Yang, Wenjin ;
Lin, Jin ;
Luo, Xiaotong ;
Huang, Guowen ;
Chen, Shuxin ;
Qu, Yanyun ;
Xu, Kele ;
Yang, Lehan ;
Sun, Pengliang ;
Niu, Xuetong ;
Zheng, Junjun ;
Ruan, Xiaotong ;
Wang, Yunfeng ;
Yang, Jiang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :627-646
[2]   NTIRE 2020 Challenge on NonHomogeneous Dehazing [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
Vasluianu, Florin-Alexandru ;
Timofte, Radu ;
Liu, Jing ;
Wu, Haiyan ;
Xie, Yuan ;
Qu, Yanyun ;
Ma, Lizhuang ;
Huang, Ziling ;
Deng, Qili ;
Chao, Ju-Chin ;
Yang, Tsung-Shan ;
Chen, Peng-Wen ;
Hsu, Po-Min ;
Liao, Tzu-Yi ;
Sun, Chung-En ;
Wu, Pei-Yuan ;
Do, Jeonghyeok ;
Park, Jongmin ;
Kim, Munchurl ;
Metwaly, Kareem ;
Li, Xuelu ;
Guo, Tiantong ;
Monga, Vishal ;
Yu, Mingzhao ;
Cherukuri, Venkateswararao ;
Chuang, Shiue-Yuan ;
Lin, Tsung-Nan ;
Lee, David ;
Chang, Jerome ;
Wang, Zhan-Han ;
Chang, Yu-Bang ;
Lin, Chang-Hong ;
Dong, Yu ;
Zhou, Hongyu ;
Kong, Xiangzhen ;
Das, Sourya Dipta ;
Dutta, Saikat ;
Zhao, Xuan ;
Ouyang, Bing ;
Estrada, Dennis ;
Wang, Meiqi ;
Su, Tianqi ;
Chen, Siyi ;
Sun, Bangyong ;
de Dravo, Vincent Whannou ;
Yu, Zhe ;
Narang, Pratik ;
Mehra, Aryan .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :2029-2044
[3]   Improving Vision Transformers by Revisiting High-Frequency Components [J].
Bai, Jiawang ;
Yuan, Li ;
Xia, Shu-Tao ;
Yan, Shuicheng ;
Li, Zhifeng ;
Liu, Wei .
COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 :1-18
[4]  
Beltagy I, 2020, Arxiv, DOI arXiv:2004.05150
[5]   Non-Local Image Dehazing [J].
Berman, Dana ;
Treibitz, Tali ;
Avidan, Shai .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1674-1682
[6]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[7]   Pre-Trained Image Processing Transformer [J].
Chen, Hanting ;
Wang, Yunhe ;
Guo, Tianyu ;
Xu, Chang ;
Deng, Yiping ;
Liu, Zhenhua ;
Ma, Siwei ;
Xu, Chunjing ;
Xu, Chao ;
Gao, Wen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :12294-12305
[8]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[9]   HINet: Half Instance Normalization Network for Image Restoration [J].
Chen, Liangyu ;
Lu, Xin ;
Zhang, Jie ;
Chu, Xiaojie ;
Chen, Chengpeng .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :182-192
[10]   ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss [J].
Chen, Wei-Ting ;
Fang, Hao-Yu ;
Hsieh, Cheng-Lin ;
Tsai, Cheng-Che ;
Chen, I-Hsiang ;
Ding, Jian-Jiun ;
Kuo, Sy-Yen .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4176-4185