Congruences involving generalized Catalan numbers and Bernoulli numbers

被引:0
作者
Yang, Jizhen [1 ]
Wang, Yunpeng [2 ]
机构
[1] Luoyang Normal Coll, Dept Math, Luoyang 471934, Peoples R China
[2] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
关键词
Bernoulli numbers; congruences; generalized Catalan numbers; generalized harmonic numbers; ARITHMETIC THEORY; SUMS;
D O I
10.3934/math.20231240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish some congruences mod p3 involving the sums & sigma;p-1k=1 kmB2lp,k, where p > 3 is a prime number and Bp,k are generalized Catalan numbers. We also establish some congruences mod p2 involving the sums & sigma;p-1k=1 kmB2l1 p,kB2l2 p,k-d, where m, l1,l2, d are positive integers and 1 & LE;d & LE;p -1.
引用
收藏
页码:24331 / 24344
页数:14
相关论文
共 21 条
[1]   A survey of the Fine numbers [J].
Deutsch, E ;
Shapiro, L .
DISCRETE MATHEMATICS, 2001, 241 (1-3) :241-265
[2]   NEW CONGRUENCES WITH THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS [J].
Elkhiri, Laid ;
Koparal, Sibel ;
Omur, Nese .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (05) :1079-1095
[3]  
Glaisher J. W. L., 1900, Quart. J. Math., V31, P321
[4]  
Gould H.W., 1972, Combinatorial Identities
[5]   Factors of binomial sums from the Catalan triangle [J].
Guo, Victor J. W. ;
Zeng, Jiang .
JOURNAL OF NUMBER THEORY, 2010, 130 (01) :172-186
[6]   CATALAN NUMBERS, THEIR GENERALIZATION, AND THEIR USES [J].
HILTON, P ;
PEDERSEN, J .
MATHEMATICAL INTELLIGENCER, 1991, 13 (02) :64-75
[7]  
IRELAND K., 1990, GRADUATE TEXTS MATH, V84
[8]   A new approach to Catalan numbers using differential equations [J].
Kim, D. S. ;
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (04) :465-475
[9]  
Kim T, 2017, APPL COMPUT MATH-BAK, V16, P177
[10]   ON CONGRUENCES INVOLVING THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS [J].
Koparal, Sibel ;
Omur, Nese .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (03) :649-658