ATTACHED PRIMES OF LOCAL COHOMOLOGY MODULES OF COMPLEXES

被引:0
作者
Tri, Nguyen Minh [1 ,2 ]
机构
[1] Univ Informat Technol, Dept Math & Phys, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
attached primes; derived category; Lichtenbaum-Hartshorne vanishing theorem; local cohomology; CATEGORY ANALOG;
D O I
10.1216/jca.2023.15.75
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a local ring, Za specialization closed subset of Spec R and X an R-complex with finitely generated homology and finite dimension. We show that AttR Hdim X Z (X) = {p & ISIN; SuppR X | cd(Z, R/p) - inf Xp = dimR X}. We also present a generalization of the Lichtenbaum-Hartshorne vanishing theorem for complexes of R-modules.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 17 条
[1]   A NOTE ON THE ARTINIAN COFINITE MODULES [J].
Abazari, Nemat ;
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) :1270-1275
[2]  
Aghapournahr M, 2009, MATH SCAND, V105, P161
[3]  
Bourbaki N., 1998, Elements of Mathematics. Commutative Algebra. Chapters 17
[4]  
Christensen L. W., 2000, GORENSTEIN DIMENSION
[5]   Attached primes of the top local cohomology modules with respect to an ideal [J].
Dibaei, MT ;
Yassemi, S .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :292-297
[6]   The Lichtenbaum-Hartshorne theorem for generalized local cohomology and connectedness [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) :3687-3702
[7]   Local rings with zero-dimensional formal fibers [J].
Doan Trung Cuong .
JOURNAL OF ALGEBRA, 2014, 403 :77-92
[8]  
Foxby H. -B., 1979, J. Pure Appl. Algebra, V15, P149
[9]   The Derived Category Analogue of the Hartshorne-Lichtenbaum Vanishing Theorem [J].
Hatamkhani, Marziyeh ;
Divaani-Aazar, Kamran .
TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (01) :195-205
[10]   Attached primes and Matlis duals of local cohomology modules [J].
Hellus, Michael .
ARCHIV DER MATHEMATIK, 2007, 89 (03) :202-210