A Nested Attention Guided UNet plus plus Architecture for White Matter Hyperintensity Segmentation

被引:3
作者
Zhang, Hao [1 ]
Zhu, Chenyang [2 ]
Lian, Xuegan [1 ]
Hua, Fei [1 ]
机构
[1] Soochow Univ, Affiliated Hosp 3, Changzhou 213000, Peoples R China
[2] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213000, Peoples R China
关键词
MRI segmentation; UNet; attention mechanism; CONVOLUTIONAL NEURAL-NETWORKS; MRI;
D O I
10.1109/ACCESS.2023.3281201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
White Matter Hyperintensity (WMH) is a common finding in Magnetic Resonance Imaging (MRI) of patients with cerebral infarction and is associated with poor prognosis. Accurate and rapid segmentation of WMH lesions is critical for clinicians to assess the risk of rebleeding and the long-term prognosis of thrombolytic patients. However, segmentation can be challenging due to the erratic signals of WMH in MRI, leading to imprecise results. Deep learning-based approaches have been proposed, but the dice similarity coefficient remains low. Atlas images are navigation maps that integrate various medical information expressions. In this study, we propose a nested attention-guided UNet++ framework that employs attention mechanisms to capture local and global features of WMH lesions using atlas images for segmentation. The framework consists of two modules, the atlas attention module, and the nested attention-guided nested U-Net module. The atlas attention module generates the atlas attention map, which is used as the input for the nested attention-guided nested U-Net module that generates the segmentation map of the FLAIR image. Experimental results demonstrate that the proposed NAUNet++ framework converges faster than conventional UNet and UNet++ approaches. Moreover, the nested architecture enhances recall and f1 scores of the segmentation results compared to the attention-guided approach.
引用
收藏
页码:66910 / 66920
页数:11
相关论文
共 32 条
[1]   Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic Resonance Imaging: A Review [J].
Caligiuri, Maria Eugenia ;
Perrotta, Paolo ;
Augimeri, Antonio ;
Rocca, Federico ;
Quattrone, Aldo ;
Cherubini, Andrea .
NEUROINFORMATICS, 2015, 13 (03) :261-276
[2]   Clinical relevance of microbleeds in acute stroke thrombolysis Comprehensive meta-analysis [J].
Charidimou, Andreas ;
Shoamanesh, Ashkan .
NEUROLOGY, 2016, 87 (15) :1534-1541
[3]   Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities [J].
Ghafoorian, Mohsen ;
Karssemeijer, Nico ;
Heskes, Tom ;
van Uden, Inge W. M. ;
Sanchez, Clara I. ;
Litjens, Geert ;
de Leeuw, Frank-Erik ;
van Ginneken, Bram ;
Marchiori, Elena ;
Platel, Bram .
SCIENTIFIC REPORTS, 2017, 7
[4]   Leukoaraiosis is a predictor of futile recanalization in acute ischemic stroke [J].
Gilberti, Nicola ;
Gamba, Massimo ;
Premi, Enrico ;
Costa, Angelo ;
Vergani, Veronica ;
Delrio, Ilenia ;
Spezi, Raffaella ;
Dikran, Mardighian ;
Frigerio, Michele ;
Gasparotti, Roberto ;
Pezzini, Alessandro ;
Padovani, Alessandro ;
Magoni, Mauro .
JOURNAL OF NEUROLOGY, 2017, 264 (03) :448-452
[5]   White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies [J].
Hu, He-Ying ;
Ou, Ya-Nan ;
Shen, Xue-Ning ;
Qu, Yi ;
Ma, Ya-Hui ;
Wang, Zuo-Teng ;
Dong, Qiang ;
Tan, Lan ;
Yu, Jin-Tai .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 120 :16-27
[6]   Dilated Saliency U-Net for White Matter Hyperintensities Segmentation Using Irregularity Age Map [J].
Jeong, Yunhee ;
Rachmadi, Muhammad Febrian ;
Valdes-Hernandez, Maria del C. ;
Komura, Taku .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
[7]   Impact of multiple pathologies on the threshold for clinically overt dementia [J].
Kapasi, Alifiya ;
DeCarli, Charles ;
Schneider, Julie A. .
ACTA NEUROPATHOLOGICA, 2017, 134 (02) :171-186
[8]  
Kingma DP, 2014, ADV NEUR IN, V27
[9]   elastix: A Toolbox for Intensity-Based Medical Image Registration [J].
Klein, Stefan ;
Staring, Marius ;
Murphy, Keelin ;
Viergever, Max A. ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :196-205
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90