Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting

被引:16
|
作者
Hu, Yuchen [1 ,2 ,3 ]
Qiu, Huijing [2 ,3 ]
Sun, Qijun [2 ,3 ,4 ]
Wang, Zhong Lin [2 ,3 ,5 ]
Xu, Liang [2 ,3 ,4 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[4] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[5] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
SMALL METHODS | 2023年 / 7卷 / 10期
基金
中国国家自然科学基金;
关键词
energy harvesting; hyperelasticity; triboelectric nanogenerators; wave energy; wheel structure; FREQUENCY; CLIMATE; ARRAY;
D O I
10.1002/smtd.202300582
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing clean and renewable energy sources is an important strategy to reduce carbon emission and achieve carbon neutrality. As one of the most promising clean energy sources, large-scale, and efficient utilization of ocean blue energy remains a challenging problem to be solved. In this work, a hyperelastic network of wheel-structured triboelectric nanogenerators (WS-TENGs) is demonstrated to efficiently harvest low-frequency and small-amplitude wave energy. Different from traditional designs of smooth shell, the external blades on the TENG allow tighter interaction between the wave and the device, which can roll on the water surface like a wheel, continuously agitating internal TENGs. Moreover, the hyperelastic networking structure can stretch and shrink like a spring with stored wave energy, further intensifying the roll of the device, and connecting the WS-TENGs to form a large-scale network. Multiple driving modes with synergistic effects can be realized under wave and wind excitations. Self-powered systems are fabricated based on the WS-TENG network, showing the capability of the device in real wave environment. The work provides a new driving paradigm that can further enhance the energy harvesting capability toward large-scale blue energy utilization based on TENGs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Perspectives of Material Optimization Strategies for High-Performance Triboelectric Nanogenerators
    Ji, Haifeng
    Sun, Cong
    Sun, Xuhui
    Wen, Zhen
    ADVANCED SUSTAINABLE SYSTEMS, 2024, 8 (05)
  • [22] Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators
    Jin, Long
    Xiao, Xiao
    Deng, Weili
    Nashalian, Ardo
    He, Daren
    Raveendran, Vidhur
    Yan, Cheng
    Su, Hai
    Chu, Xiang
    Yang, Tao
    Li, Wen
    Yang, Weiqing
    Chen, Jun
    NANO LETTERS, 2020, 20 (09) : 6404 - 6411
  • [23] Triboelectric Nanogenerators Using Recycled Disposable Medical Masks for Water Wave Energy Harvesting
    Liang, Xi
    Liu, Zhirong
    Han, Kai
    Liu, Shijie
    Xie, Yaxuan
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [24] A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting
    Xu, Qingyue
    Shang, Chenjing
    Ma, Haoxiang
    Hong, Quan
    Li, Changzheng
    Ding, Su
    Xue, Liang
    Sun, Xin
    Pan, Yuanchao
    Sugahara, Tohru
    Yalikun, Yaxiaer
    Lai, Ying-Chih
    Yang, Yang
    NANO ENERGY, 2023, 109
  • [25] Recent advances on porous materials and structures for high-performance triboelectric nanogenerators
    Rastegardoost, Mohammad M.
    Tafreshi, Omid Aghababaei
    Saadatnia, Zia
    Ghaffari-Mosanenzadeh, Shahriar
    Park, Chul B.
    Naguib, Hani E.
    NANO ENERGY, 2023, 111
  • [26] Coastal bridge infrastructure: energy-harvesting and sensing capabilities through magnetic structured triboelectric nanogenerators
    Nazar, Ali Matin
    Rayegani, Arash
    Rashidi, Maria
    Sardo, Fatemeh Rahimi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2024,
  • [27] Metal Island Structure as a Power Booster for High-Performance Triboelectric Nanogenerators
    Ravichandran, Aravind Narain
    Ramuz, Marc
    Blayac, Sylvain
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (11)
  • [28] High-performance triboelectric nanogenerators doped with carbon nanomaterials derived from cobalt-nickel bimetallic organic frameworks for harvesting low-frequency mechanical energy
    Chen, Shunfa
    Hong, Shunhuan
    Li, Yuanyuan
    Zhang, Yan
    Wang, Ping
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [29] High-performance triboelectric nanogenerators based on Ag-doped ZnO loaded electrospun PVDF nanofiber mats for energy harvesting and healthcare monitoring
    Venkatesan, Hema Malini
    Arun, Anand Prabu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting
    Zhang, Lu
    Su, Chen
    Cheng, Li
    Cui, Nuanyang
    Gu, Long
    Qin, Yong
    Yang, Rusen
    Zhou, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26824 - 26829