Cavity Quantum Electrodynamics with Hyperbolic van der Waals Materials

被引:11
作者
Ashida, Yuto [1 ,2 ]
Imamoglu, Atac [3 ]
Demler, Eugene [4 ]
机构
[1] Univ Tokyo, Dept Phys, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Phys Intelligence, 7-3-1 Hongo, Tokyo 1130033, Japan
[3] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
基金
日本学术振兴会; 瑞士国家科学基金会;
关键词
PHONON-POLARITONS;
D O I
10.1103/PhysRevLett.130.216901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ground-state properties and excitation energies of a quantum emitter can be modified in the ultrastrong coupling regime of cavity quantum electrodynamics (QED) where the light-matter interaction strength becomes comparable to the cavity resonance frequency. Recent studies have started to explore the possibility of controlling an electronic material by embedding it in a cavity that confines electromagnetic fields in deep subwavelength scales. Currently, there is a strong interest in realizing ultrastrong-coupling cavity QED in the terahertz (THz) part of the spectrum, since most of the elementary excitations of quantum materials are in this frequency range. We propose and discuss a promising platform to achieve this goal based on a two-dimensional electronic material encapsulated by a planar cavity consisting of ultrathin polar van der Waals crystals. As a concrete setup, we show that nanometer-thick hexagonal boron nitride layers should allow one to reach the ultrastrong coupling regime for single-electron cyclotron resonance in a bilayer graphene. The proposed cavity platform can be realized by a wide variety of thin dielectric materials with hyperbolic dispersions. Consequently, van der Waals heterostructures hold the promise of becoming a versatile playground for exploring the ultrastrong-coupling physics of cavity QED materials.
引用
收藏
页数:7
相关论文
共 74 条
  • [1] Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect
    Appugliese, Felice
    Enkner, Josefine
    Paravicini-Bagliani, Gian Lorenzo
    Beck, Mattias
    Reichl, Christian
    Wegscheider, Werner
    Scalari, Giacomo
    Ciuti, Cristiano
    Faist, Jerome
    [J]. SCIENCE, 2022, 375 (6584) : 1030 - +
  • [2] APS, US, DOI [10.1103/PhysRevLett.130.216901, DOI 10.1103/PHYSREVLETT.130.216901]
  • [3] Nonperturbative waveguide quantum electrodynamics
    Ashida, Yuto
    Yokota, Takeru
    Imamoglu, Atac
    Demler, Eugene
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [4] Non-Hermitian physics
    Ashida, Yuto
    Gong, Zongping
    Ueda, Masahito
    [J]. ADVANCES IN PHYSICS, 2020, 69 (03) : 249 - 435
  • [5] Cavity Quantum Electrodynamics at Arbitrary Light-Matter Coupling Strengths
    Ashida, Yuto
    Imamoglu, Atac
    Demler, Eugene
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (15)
  • [6] Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition
    Ashida, Yuto
    Imamoglu, Atac
    Faist, Jerome
    Jaksch, Dieter
    Cavalleri, Andrea
    Demler, Eugene
    [J]. PHYSICAL REVIEW X, 2020, 10 (04):
  • [7] Vacuum-dressed cavity magnetotransport of a two-dimensional electron gas
    Bartolo, Nicola
    Ciuti, Cristiano
    [J]. PHYSICAL REVIEW B, 2018, 98 (20)
  • [8] Terahertz Light-Matter Interaction beyond Unity Coupling Strength
    Bayer, Andreas
    Pozimski, Marcel
    Schambeck, Simon
    Schuh, Dieter
    Huber, Rupert
    Bougeard, Dominique
    Lange, Christoph
    [J]. NANO LETTERS, 2017, 17 (10) : 6340 - 6344
  • [9] Circuit quantum electrodynamics
    Blais, Alexandre
    Grimsmo, Arne L.
    Girvin, S. M.
    Wallraffe, Andreas
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [10] Strongly correlated electron-photon systems
    Bloch, Jacqueline
    Cavalleri, Andrea
    Galitski, Victor
    Hafezi, Mohammad
    Rubio, Angel
    [J]. NATURE, 2022, 606 (7912) : 41 - 48