On the convergence of piecewise polynomial collocation methods for variable-order space-fractional diffusion equations

被引:1
作者
Yuan, Wenping [1 ]
Liang, Hui [1 ]
Chen, Yanping [2 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order space-fractional diffusion equation; Volterra integral equation; Collocation method; Error analysis; ACCURACY;
D O I
10.1016/j.matcom.2023.02.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, we present a piecewise polynomial collocation method for the boundary-value problem of variable-order linear space-fractional diffusion equations. The proposed model is transformed to a weakly singular Volterra integral equation (VIE) of the second kind by an auxiliary variable, then a collocation method is constructed and analyzed for the obtained VIE. We demonstrate the existence and uniqueness of the collocation solution, as well as the optimal convergence order of the collocation method. Some numerical experiments are given to illustrate the theoretical results. (c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 117
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 2015, Numerical methods for fractional calculus
[2]  
Brunner H., 2004, COLLOCATION METHODS
[3]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[4]   A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains [J].
Fu, Zhuo-Jia ;
Reutskiy, Sergiy ;
Sun, Hong-Guang ;
Ma, Ji ;
Khan, Mushtaq Ahmad .
APPLIED MATHEMATICS LETTERS, 2019, 94 :105-111
[5]   On an accurate discretization of a variable-order fractional reaction-diffusion equation [J].
Hajipour, Mojtaba ;
Jajarmi, Amin ;
Baleanu, Dumitru ;
Sun, HongGuang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 :119-133
[6]   THE CONVERGENCE OF COLLOCATION SOLUTIONS IN CONTINUOUS PIECEWISE POLYNOMIAL SPACES FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS [J].
Liang, Hui ;
Brunner, Hermann .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) :1875-1896
[7]   Variable order and distributed order fractional operators [J].
Lorenzo, CF ;
Hartley, TT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :57-98
[8]  
Pudlubny I., 1999, FRACTIONAL DIFFERENT
[9]  
Samko S.G., 1993, INTEGRAL T SPECIAL F, V1, P277, DOI [10.1080/10652469308819027, DOI 10.1080/10652469308819027]
[10]   An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay [J].
Zaky, M. A. ;
Van Bockstal, K. ;
Taha, T. R. ;
Suragan, D. ;
Hendy, A. S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420