The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits

被引:19
作者
Koppenol, Rebekah [1 ,2 ,3 ,4 ]
Conceicao, Andre [1 ,2 ,3 ]
Afonso, Ines T. [1 ,3 ]
Afonso-Reis, Ricardo [1 ,3 ]
Costa, Rafael G. [1 ,3 ]
Tome, Sandra [4 ]
Teixeira, Diogo [1 ]
da Silva, Joana Pinto [1 ]
Codesso, Jose Miguel [1 ,2 ,3 ,4 ]
Brito, David V. C. [1 ]
Mendonca, Liliana [4 ]
Marcelo, Adriana [1 ,3 ,4 ]
de Almeida, Luis Pereira [4 ,5 ]
Matos, Carlos A. [1 ,3 ]
Nobrega, Clevio [1 ,3 ,6 ]
机构
[1] Algarve Biomed Ctr Res Inst, ABC RI, P-8005139 Faro, Portugal
[2] Univ Algarve, Fac Med & Ciencias Biomed, PhD Program Biomedial Sci, P-8005139 Faro, Portugal
[3] Univ Algarve, Fac Med & Ciencias Biomed, P-8005139 Faro, Portugal
[4] Univ Coimbra, Ctr Neurosci & Cell Biol CNC, P-3004504 Coimbra, Portugal
[5] Univ Coimbra, Fac Pharm, P-3000548 Coimbra, Portugal
[6] Champalimaud Ctr Unknown, Champalimaud Res Program, P-1400038 Lisbon, Portugal
关键词
G3BP1; stress granules; spinocerebellar ataxia; neurodegeneration; RNA-BINDING PROTEINS; POLYGLUTAMINE DISEASES; ENDORIBONUCLEASE G3BP; NUCLEAR-LOCALIZATION; MUTANT ATAXIN-3; MOUSE; MODEL; PHOSPHORYLATION; AGGREGATION; EXPRESSION;
D O I
10.1093/brain/awac473
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Koppenol et al. show that overexpression of G3BP1 in cell models of SCA2 and SCA3 leads to a reduction in ataxin-2 and ataxin-3 aggregation. G3BP1 lentiviral delivery reduces motor deficits and neuropathology in preclinical models, suggesting that G3BP1 may be a potential therapeutic target for polyQ disorders. Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.
引用
收藏
页码:2346 / 2363
页数:18
相关论文
共 57 条
[1]   Rasputin a decade on and more promiscuous than ever? A review of G3BPs [J].
Alam, Umber ;
Kennedy, Derek .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2019, 1866 (03) :360-370
[2]   Striatal and nigral pathology in a lentiviral rat model of Machado-Joseph disease [J].
Alves, Sandro ;
Regulier, Etienne ;
Nascimento-Ferreira, Isabel ;
Hassig, Raymonde ;
Dufour, Noelle ;
Koeppen, Arnulf ;
Carvalho, Ana Luisa ;
Simoes, Sergio ;
Pedroso de Lima, Maria C. ;
Brouillet, Emmanuel ;
Gould, Veronica Colomer ;
Deglon, Nicole ;
de Almeida, Luis Pereira .
HUMAN MOLECULAR GENETICS, 2008, 17 (14) :2071-2083
[3]  
Anderson P, 2002, J CELL SCI, V115, P3227
[4]   Unraveling the Role of Ataxin-2 in Metabolism [J].
Carmo-Silva, Sara ;
Nobrega, Clevio ;
de Almeida, Luis Pereira ;
Cavadas, Claudia .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2017, 28 (04) :309-318
[5]   Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis [J].
Chai, YH ;
Shao, JQ ;
Miller, VM ;
Williams, A ;
Paulson, HL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (14) :9310-9315
[6]   Polyglutamine protein aggregation and toxicity are linked to the cellular stress response [J].
Cowan, KJ ;
Diamond, MI ;
Welch, WJ .
HUMAN MOLECULAR GENETICS, 2003, 12 (12) :1377-1391
[7]  
de Almeida LP, 2002, J NEUROSCI, V22, P3473
[8]   Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease [J].
Déglon, N ;
Tseng, JL ;
Bensadoun, JC ;
Zurn, AD ;
Arsenijevic, Y ;
De Almeida, LP ;
Zufferey, R ;
Trono, D ;
Aebischer, P .
HUMAN GENE THERAPY, 2000, 11 (01) :179-190
[9]  
Duennwald ML, 2015, FUTUR SCI OA, V1, DOI [10.4155/FSO.15.42cMLDuennwald, 10.4155/fso.15.42]
[10]   Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies [J].
Estrada, R ;
Galarraga, J ;
Orozco, G ;
Nodarse, A ;
Auburger, G .
ACTA NEUROPATHOLOGICA, 1999, 97 (03) :306-310