Mechanochemically sulfidated zero-valent iron as persulfate activation catalyst in permeable reactive barriers for groundwater remediation - A feasibility study

被引:7
|
作者
Yin, Zhou [1 ]
Cagnetta, Giovanni [1 ]
Huang, Jun [1 ]
机构
[1] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Cont, Beijing Key Lab Emerging Organ Contaminants Contro, Beijing Lab Environm Frontier Technol BLEFT,Sch En, Beijing 100084, Peoples R China
关键词
Ball milling; Sulfidated zero-valent iron; Persulfate; Atrazine; Permeable reactive barrier; REDUCTIVE DECHLORINATION; STRUCTURAL-PROPERTIES; TRIAZINE HERBICIDES; ATRAZINE; DEGRADATION; OXIDATION; NANOPARTICLES; KINETICS; WATER; TRANSFORMATION;
D O I
10.1016/j.chemosphere.2022.137081
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The technology of permeable reactive barriers is reliable and economically effective to prevent the spread of pollutants in groundwaters. Yet, it is efficacious only with easily reducible chemicals such as heavy metals and halogenated organics. In the present study, sulfidated zero-valent iron solventless synthesized by ball-milling is proposed as a possible barrier filling for activation of persulfate to achieve sound removal of reduction-resistant organic pollutants (the herbicide atrazine was used as a model pollutant). Preliminary batch experiments demonstrated rapid degradation of atrazine. Continuous experiments executed in columns proved the superior efficiency of sulfidated iron as a persulfate activator, compared to zero-valent iron, in terms of removal of both atrazine and byproducts. Optimal atrazine removal in the column was achieved with 10% sulfidated iron packing, and 9 mM persulfate at a hydraulic residence time of 6.02 h. Under such conditions, the estimated bed length of the reactive barrier for 99% atrazine removal was 8.69 cm. The morphology and surface-active species in the column demonstrated that activation of persulfate mainly occurred at the inlet of the column until the complete usage of the active species. Batch experiments with coexisting ions suggested that they have a minor influence on atrazine removal percentage, while Mg2+, Ca2+, CO2-and HCO- had a significant impact on the kinetics of the process. However, analogous column experiments demonstrated that the coexisting ions have a negative influence on both atrazine and its byproducts. The results obtained in this study corroborate the potential application of persulfate-enhanced permeable reactive barriers for in situ removal of atrazine from underground water.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] GROUNDWATER TREATMENT WITH THE USE OF ZERO-VALENT IRON IN THE PERMEABLE REACTIVE BARRIER TECHNOLOGY
    Suponik, Tomasz
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2013, 49 (01): : 13 - 23
  • [12] Application of a Zero-Valent Iron/Cork as Permeable Reactive Barrier for In Situ Remediation of Phenanthrene in Soil
    Galvao, Alvaro G. P.
    Costa, Leticia G. A.
    Costa, Emily C. T. de A.
    da Silva, Djalma R.
    Martinez-Huitle, Carlos A.
    dos Santos, Elisama Vieira
    CATALYSTS, 2022, 12 (12)
  • [13] Degradation of Tetracycline in Wastewater by Persulfate Activated by Sulfidated Nanometer Zero-valent Iron
    Ye, Qiuyue
    Hu, Zhengchun
    Wang, Ziyi
    Xu, Wen
    Zhao, Shiyi
    Deng, Xuying
    Guo, Minghao
    Guo, Na
    Liao, Bing
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (04): : 35 - 45
  • [14] Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation
    Bossa, Nathan
    Carpenter, Alexis Wells
    Kumar, Naresh
    de lannoy, Charles-Francois
    Wiesner, Mark
    ENVIRONMENTAL SCIENCE-NANO, 2017, 4 (06) : 1294 - 1303
  • [15] Estimate of the optimum weight ratio in Zero-Valent Iron/Pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater
    Calabro, P. S.
    Moraci, N.
    Suraci, P.
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 207 : 111 - 116
  • [16] Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation
    Galdames, Alazne
    Ruiz-Rubio, Leire
    Orueta, Maider
    Sanchez-Arzalluz, Miguel
    Luis Vilas-Vilela, Jose
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (16) : 1 - 23
  • [17] Persulfate activation by natural zeolite supported nanoscale zero-valent iron for trichloroethylene degradation in groundwater
    Huang, Junyi
    Yi, Shuping
    Zheng, Chunmiao
    Lo, Irene M. C.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 684 : 351 - 359
  • [18] Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study
    Wu, Shuyan
    Cai, Shichao
    Qin, Fengyang
    He, Feng
    Liu, Tianxi
    Yan, Xiuping
    Wang, Zhenyu
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 446
  • [19] Application of zero-valent iron/peat permeable reactive barrier for in-situ remediation of lindane and chlorobenzenes
    Konczak, Beata
    Gzyl, Grzegorz
    Waclawek, Stanislaw
    Labaj, Pawel
    Silvestri, Daniele
    Hrabak, Pavel
    Cernik, Miroslav
    DESALINATION AND WATER TREATMENT, 2022, 252 : 287 - 299
  • [20] Removal of zinc from contaminated groundwater by zero-valent iron permeable reactive barrier
    Faisal, Ayad A. H.
    Abbas, Talib R.
    Jassam, Salim H.
    DESALINATION AND WATER TREATMENT, 2015, 55 (06) : 1586 - 1597