On some estimates involving Fourier coefficients of Maass cusp forms

被引:0
作者
Sun, Qingfeng [1 ]
Wang, Hui [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Maass cusp form; exponential sums; Fourier coefficients; SUMS; SUBCONVEXITY; SUMMATION; SQUARE;
D O I
10.1142/S1793042123500495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a Hecke-Maass cusp form for SL2(Z) with Laplace eigenvalue lambda(f)(Delta) = 1/4+mu(2) and let lambda(f)(n) be its nth normalized Fourier coefficient. It is proved that, uniformly in alpha,beta is an element of R, Sigma(n <= X)lambda(f)>ne(alpha n(2)+beta n) << X7/8+epsilon lambda(f)(Delta)(1/2+epsilon), depends only on epsilon. We also consider the summation function of lambda(f) (n) and under the Ramanujan conjecture we are able to prove Sigma(n <= X)lambda(f)(n) << X1/3+epsilon lambda(f)(Delta)(4/9+epsilon )the implied constant depending only on epsilon.
引用
收藏
页码:997 / 1019
页数:23
相关论文
共 27 条
  • [11] Huxley M., 1996, LONDON MATH SOC MONO, V13
  • [12] Iwaniec H., 2004, ANAL NUMBER THEORY, V53
  • [13] Iwaniec H., 2002, GRADUATE STUDIES MAT, V53
  • [14] On sums of Fourier coefficients of Maass cusp forms
    Jiang, Yujiao
    Lu, Guangshi
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1233 - 1243
  • [15] Uniform bound for Hecke L-functions
    Jutila, Matti
    Motohashi, Yoichi
    [J]. ACTA MATHEMATICA, 2005, 195 (01) : 61 - 115
  • [16] Karatsuba, 1993, BASIC ANAL NUMBER TH, DOI 10.1007/978-3-642-58018-5
  • [17] Functoriality for the exterior square of GL4 and the symmetric fourth of GL2
    Kim, HH
    Ramakrishnan, D
    Sarnak, P
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) : 139 - 183
  • [18] Kiral EM, 2019, J THEOR NOMBR BORDX, V31, P145
  • [19] On exponential sums involving Fourier coefficients of cusp forms
    Liu, Kui
    Ren, Xiumin
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (01) : 171 - 181
  • [20] On averages of Fourier coefficients of Maass cusp forms
    Lu, Guangshi
    [J]. ARCHIV DER MATHEMATIK, 2013, 100 (03) : 255 - 265