On some estimates involving Fourier coefficients of Maass cusp forms

被引:0
作者
Sun, Qingfeng [1 ]
Wang, Hui [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Maass cusp form; exponential sums; Fourier coefficients; SUMS; SUBCONVEXITY; SUMMATION; SQUARE;
D O I
10.1142/S1793042123500495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a Hecke-Maass cusp form for SL2(Z) with Laplace eigenvalue lambda(f)(Delta) = 1/4+mu(2) and let lambda(f)(n) be its nth normalized Fourier coefficient. It is proved that, uniformly in alpha,beta is an element of R, Sigma(n <= X)lambda(f)>ne(alpha n(2)+beta n) << X7/8+epsilon lambda(f)(Delta)(1/2+epsilon), depends only on epsilon. We also consider the summation function of lambda(f) (n) and under the Ramanujan conjecture we are able to prove Sigma(n <= X)lambda(f)(n) << X1/3+epsilon lambda(f)(Delta)(4/9+epsilon )the implied constant depending only on epsilon.
引用
收藏
页码:997 / 1019
页数:23
相关论文
共 27 条
  • [1] [Anonymous], 1974, PUBL MATH-PARIS, V43, P273, DOI [DOI 10.1007/BF02684373.MR0340258(49#5013, 10.1007/BF02684373]
  • [2] DISTRIBUTION OF MASS OF HOLOMORPHIC CUSP FORMS
    Blomer, Valentin
    Khan, Rizwanur
    Young, Matthew
    [J]. DUKE MATHEMATICAL JOURNAL, 2013, 162 (14) : 2609 - 2644
  • [3] The subconvexity problem for Artin L-functions
    Duke, W
    Friedlander, JB
    Iwaniec, H
    [J]. INVENTIONES MATHEMATICAE, 2002, 149 (03) : 489 - 577
  • [4] ZEROS OF L-FUNCTIONS ATTACHED TO MAASS FORMS
    EPSTEIN, C
    HAFNER, JL
    SARNAK, P
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (01) : 113 - 128
  • [5] Summation formulae for coefficients of L-functions
    Friedlander, JB
    Iwaniec, H
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (03): : 494 - 505
  • [6] Additive twists of Fourier coefficients of modular forms
    Godber, Daniel
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 83 - 104
  • [7] Hafner J., 1989, ENSEIGN MATH, V35, P375
  • [8] SOME REMARKS ON ODD MAASS WAVE FORMS
    HAFNER, JL
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) : 129 - 132
  • [9] Hecke E., 1927, ABH MATH SEM HAMBURG, V5, P199
  • [10] On the Rankin-Selberg problem
    Huang, Bingrong
    [J]. MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1217 - 1251