Spatial-Frequency Multi-Scale Transformer for Deblurring and Shape-Preserving Reconstruction in Magnetic Particle Imaging

被引:2
作者
Shang, Yaxin [1 ]
Liu, Jie [1 ]
Liu, Yanjun [2 ]
Wang, Yueqi [3 ,4 ]
Shen, Yusong [5 ]
Wu, Xiangjun [2 ]
Zhang, Liwen [3 ,4 ]
Hui, Hui [3 ,4 ]
Tian, Jie [2 ,6 ,7 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China
[3] Inst Automat, CAS Key Lab Mol Imaging, Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[5] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[6] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[7] Beihang Univ, Key Lab Big Data Based Precis Med, Minist Ind & Informat Technol China, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Imaging; Image reconstruction; Image edge detection; Frequency-domain analysis; Image restoration; Transforms; Magnetic particle imaging; X-space; transformer; deblurring; shape-preserving; RESOLUTION; MODEL;
D O I
10.1109/TCI.2024.3356859
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetic particle imaging (MPI) is a novel and emerging functional imaging technique that visualizes the spatial distribution of magnetic nanoparticles (MNPs). While the X-space method considers some important physical properties of MPI systems, it also neglects some phenomena, such as signals generated by MNPs outside (but close-to) the field-free region. Therefore, the X-space approach often results in blurring artifacts and incomplete edge information in native MPI images. In this study, we propose a spatial-frequency multi-scale transformer (SFM-Transformer) to address this limitation by restoring both the spatial and frequency domain features of the native image. SFM-Transformer comprises three modules: the spatial and frequency feature extractor module (SFFE), the spatial and frequency fusion module (SFF), and the multi-scale fusion module (MSF). By incorporating cross-feature space dependencies and capturing long-range details in spatial and frequency domains, our network captures pixel-level features and implicit physical properties features of native images. Furthermore, the SFM-Transformer utilizes a multi-scale strategy at the backbone to further improve performance. To facilitate comprehensive research, we construct a diverse dataset containing both simulated and experimental datasets. To validate the effectiveness of our method, we conduct extensive experiments in simulated and experimental data. The experimental results demonstrate that our method eliminates the blurring artifacts and recovers the edge shape of MPI images. This suggests that our approach has great potential for improving the accuracy and reliability of MPI for future applications.
引用
收藏
页码:196 / 207
页数:12
相关论文
共 44 条
[1]   Magnetic particle imaging in vascular medicine [J].
Bakenecker, Anna C. ;
Ahlborg, Mandy ;
Debbeler, Christina ;
Kaethner, Christian ;
Buzug, Thorsten M. ;
Luedtke-Buzug, Kerstin .
INNOVATIVE SURGICAL SCIENCES, 2018, 3 (03) :179-+
[2]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767
[3]   Acceleration of iterative image restoration algorithms [J].
Biggs, DSC ;
Andrews, M .
APPLIED OPTICS, 1997, 36 (08) :1766-1775
[4]   Fundamentals and applications of magnetic particle imaging [J].
Borgert, Joern ;
Schmidt, Joachim D. ;
Schmale, Ingo ;
Rahmer, Juergen ;
Bontus, Claas ;
Gleich, Bernhard ;
David, Bernd ;
Eckart, Rainer ;
Woywode, Oliver ;
Weizenecker, Juergen ;
Schnorr, Joerg ;
Taupitz, Matthias ;
Haegele, Julian ;
Vogt, Florian M. ;
Barkhausen, Joerg .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2012, 6 (03) :149-153
[5]   DO-Conv: Depthwise Over-Parameterized Convolutional Layer [J].
Cao, Jinming ;
Li, Yangyan ;
Sun, Mingchao ;
Chen, Ying ;
Lischinski, Dani ;
Cohen-Or, Daniel ;
Chen, Baoquan ;
Tu, Changhe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :3726-3736
[6]   Rethinking Coarse-to-Fine Approach in Single Image Deblurring [J].
Cho, Sung-Jin ;
Ji, Seo-Won ;
Hong, Jun-Pyo ;
Jung, Seung-Won ;
Ko, Sung-Jea .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :4621-4630
[7]   Near real-time magnetic particle imaging for visual assessment of vascular stenosis in a phantom model [J].
Dietrich, Philipp ;
Vogel, Patrick ;
Kampf, Thomas ;
Rueckert, Martin A. ;
Behr, Volker C. ;
Bley, Thorsten A. ;
Herz, Stefan .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 81 :210-214
[8]   Magnetic Particle Imaging Is a Sensitive In Vivo Imaging Modality for the Detection of Dendritic Cell Migration [J].
Gevaert, Julia J. ;
Fink, Corby ;
Dikeakos, Jimmy D. ;
Dekaban, Gregory A. ;
Foster, Paula J. .
MOLECULAR IMAGING AND BIOLOGY, 2022, 24 (06) :886-897
[9]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[10]  
Gonzales P., 1987, Digital Image Processing, P38