Sharp estimates of lowest positive Neumann eigenvalue for general indefinite Sturm-Liouville problems

被引:2
作者
Zhang, Zhi [1 ]
Wang, Xun [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国博士后科学基金;
关键词
Sharp bounds; Neumann eigenvalues; Measure differential equations; Indefinite potentials; Sturm-Liouville; problem; MEASURE DIFFERENTIAL-EQUATIONS; INVERSE SPECTRAL PROBLEM; PRINCIPAL EIGENVALUES; CONTINUOUS DEPENDENCE; MINIMIZATION; CONTINUITY;
D O I
10.1016/j.jde.2023.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two measures mu, nu and their total variations, we study the minimization of Neumann eigenvalues for measure differential equation dy(center dot) = y(t)d mu(t) + lambda y d nu (t). By solving the infinitely dimensional minimization problem of the lowest positive Neumann eigenvalue for the measure differential equation, we obtain the optimal lower bound of the lowest positive Neumann eigenvalue for the Sturm-Liouville problem y '' = q (t)y + lambda m(t)y, where q(t) is a nonnegative potential function and the other potential function m(t) admits to change sign.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:302 / 320
页数:19
相关论文
共 31 条
[1]   Calogero-Francoise flows and periodic peakons [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (03) :1631-1646
[2]  
Bennewitz Christer., 2020, SPECTRAL SCATTERING, VI
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   Minimizations of positive periodic and Dirichlet eigenvalues for general indefinite Sturm-Liouville problems [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Zhi .
ADVANCES IN MATHEMATICS, 2023, 432
[5]   Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations [J].
Chu, Jifeng ;
Meng, Gang .
MATHEMATISCHE ANNALEN, 2024, 388 (02) :1205-1224
[6]   Minimization of lowest positive periodic eigenvalue for the Camassa-Holm equation with indefinite potential [J].
Chu, Jifeng ;
Meng, Gang .
STUDIA MATHEMATICA, 2023, 268 (03) :241-258
[7]   Continuous dependence and estimates of eigenvalues for periodic generalized Camassa-Holm equations [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Zhi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) :6343-6358
[8]   Continuity and minimization of spectrum related with the periodic Camassa-Holm equation [J].
Chu, Jifeng ;
Meng, Gang ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1678-1695
[9]   On the inverse spectral problem for the Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 155 (02) :352-363
[10]  
CONSTANTIN A, 1997, ANN SCUOLA NORM-SCI, V24, P767