Oxygen-vacancy-type Mars-van Krevelen mechanism drives ultrafast dioxygen electroreduction to hydrogen peroxide

被引:17
作者
Ding, Shan [1 ]
Zhang, Yuxiang [1 ]
Lou, Fengqian [1 ]
Li, Ming [1 ]
Huang, Qi [1 ]
Yang, Kang [1 ]
Xia, Baokai [1 ]
Tang, Cheng [3 ]
Duan, Jingjing [1 ]
Antonietti, Markus [2 ]
Chen, Sheng [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat,Minist Educ, Nanjing 210094, Peoples R China
[2] Max Planck Inst Colloids & Interfaces, D-14476 Potsdam, Germany
[3] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
关键词
Catalysis; Oxygen reduction reaction; Mechanism; Zinc oxide;
D O I
10.1016/j.mtener.2023.101430
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical oxygen reduction reaction (ORR) along a two-electron transfer pathway has been considered as an eco-friendly route for producing hydrogen peroxide (H2O2). However, large-scale industrial application of this ORR technology calls for ultrafast and effective generation of H2O2 under operating conditions (current densities >1 A/cm(2) and Faradaic efficiency approximate to 100%). This imposes strict criteria for exploring innovative strategies for enhancing the adsorption and activation of O-2 under vigorous reaction condition, which represents a significant challenge thus far. Here, we report an 'oxygen-vacancy-type' Mars-van Krevelen mechanism for promoting ORR. Our theoretical calculations show that the structural oxygen vacancies of zinc oxide catalysts effectively alter the electron densities of nearby metal active sites, producing a more electron-deficient Zn center, which, in turn, assists the adsorption and activation of O-2. A catalyst electrode designed as that exhibits superior ORR activities with a Faradaic efficiency of 98.1% at a current density of 1 A/cm(2) (H2O2 yield rate of 621.88 mg/h/cm(2)). Further mechanism study has been performed through in situ Raman spectroscopy to monitor the adsorption and activation of oxygen intermediate (& lowast;O-2) of ORR, providing additional experimental evidence for the Mars-van Krevelen mechanism.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production [J].
Bu, Yunfei ;
Wang, Yaobin ;
Han, Gao-Feng ;
Zhao, Yunxia ;
Ge, Xinlei ;
Li, Feng ;
Zhang, Zhihui ;
Zhong, Qin ;
Baek, Jong-Beom .
ADVANCED MATERIALS, 2021, 33 (49)
[2]   Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents [J].
Cao, Peike ;
Quan, Xie ;
Nie, Xiaowa ;
Zhao, Kun ;
Liu, Yanming ;
Chen, Shuo ;
Yu, Hongtao ;
Chen, Jingguang G. G. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[3]   Identification of the Highly Active Co-N4 Coordination Motif for Selective Oxygen Reduction to Hydrogen Peroxide [J].
Chen, Shanyong ;
Luo, Tao ;
Li, Xiaoqing ;
Chen, Kejun ;
Fu, Junwei ;
Liu, Kang ;
Cai, Chao ;
Wang, Qiyou ;
Li, Hongmei ;
Chen, Yu ;
Ma, Chao ;
Zhu, Li ;
Lu, Ying-Rui ;
Chan, Ting-Shan ;
Zhu, Mingshan ;
Cortes, Emiliano ;
Liu, Min .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (32) :14505-14516
[4]   An abnormal size effect enables ampere-level O2 electroreduction to hydrogen peroxide in neutral electrolytes [J].
Ding, Shan ;
Xia, Baokai ;
Li, Ming ;
Lou, Fengqian ;
Cheng, Chi ;
Gao, Tianqi ;
Zhang, Yuxiang ;
Yang, Kang ;
Jiang, Lili ;
Nie, Zhihao ;
Guan, Hongxin ;
Duan, Jingjing ;
Chen, Sheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (08) :3363-3372
[5]   Direct In Situ Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(hkl) Surfaces [J].
Dong, Jin-Chao ;
Su, Min ;
Briega-Martos, Valentin ;
Li, Lang ;
Le, Jia-Bo ;
Radjenovic, Petar ;
Zhou, Xiao-Shun ;
Feliu, Juan Miguel ;
Tian, Zhong-Qun ;
Li, Jian-Feng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (02) :715-719
[6]   In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces [J].
Dong, Jin-Chao ;
Zhang, Xia-Guang ;
Briega-Martos, Valentin ;
Jin, Xi ;
Yang, Ji ;
Chen, Shu ;
Yang, Zhi-Lin ;
Wu, De-Yin ;
Feliu, Juan Miguel ;
Williams, Christopher T. ;
Tian, Zhong-Qun ;
Li, Jian-Feng .
NATURE ENERGY, 2019, 4 (01) :60-67
[7]   Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude [J].
Duan, Jingjing ;
Chen, Sheng ;
Ortiz-Ledon, Cesar A. ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (21) :8181-8186
[8]   Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction [J].
Fan, Wenjun ;
Duan, Zhiyao ;
Liu, Wei ;
Mehmood, Rashid ;
Qu, Jiating ;
Cao, Yucheng ;
Guo, Xiangyang ;
Zhong, Jun ;
Zhang, Fuxiang .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]   Optimization of H2O2 production in a small-scale off-grid buffer layer flow cell equipped with Cobalt@N-doped graphitic carbon core-shell nanohybrid electrocatalyst [J].
Filippi, Jonathan ;
Miller, Hamish A. ;
Nasi, Lucia ;
V. Pagliaro, Maria ;
Marchionni, Andrea ;
Melchionna, Michele ;
Fornasiero, Paolo ;
Vizza, Francesco .
MATERIALS TODAY ENERGY, 2022, 29
[10]   Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design [J].
Jung, Euiyeon ;
Shin, Heejong ;
Antink, Wytse Hooch ;
Sung, Yung-Eun ;
Hyeon, Taeghwan .
ACS ENERGY LETTERS, 2020, 5 (06) :1881-1892