Oriented Right-Angled Artin Pro-ℓ Groups and Maximal Pro-ℓ Galois Groups

被引:3
作者
Blumer, Simone [1 ]
Quadrelli, Claudio [2 ]
Weigel, Thomas S. [1 ]
机构
[1] Univ Milano Bicocca, Dept Math & Applicat, I-20125 Milan, Italy
[2] Univ Insubria, Dept Sci & High Tech, I-22100 Como, Italy
关键词
P-GROUPS; MASSEY PRODUCTS; GRAPH; CONJECTURE; SUBGROUPS; PROPERTY;
D O I
10.1093/imrn/rnad276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a prime number $\ell $, we introduce and study oriented right-angled Artin pro-$\ell $ groups $G_{\Gamma ,\lambda }$(oriented pro-$\ell $ RAAGs for short) associated to a finite oriented graph $\Gamma $ and a continuous group homomorphism $\lambda \colon{\mathbb{Z}}_{\ell }\to{\mathbb{Z}}_{\ell }<^>{\times }$. We show that an oriented pro-$\ell $ RAAG $G_{\Gamma ,\lambda }$ is a Bloch-Kato pro-$\ell $ group if, and only if, $(G_{\Gamma ,\lambda },\theta _{\Gamma ,\lambda })$ is an oriented pro-$\ell $ group of elementary type, generalizing a recent result of I. Snopce and P. Zalesskii-here $\theta _{\Gamma ,\lambda }\colon G_{\Gamma ,\lambda }\to{\mathbb{Z}}_{\ell}<^>{\times }$ denotes the canonical $\ell $-orientation on $G_{\Gamma ,\lambda }$. This yields a plethora of new examples of pro-$\ell $ groups that are not maximal pro-$\ell $ Galois groups. We invest some effort in order to show that oriented right-angled Artin pro-$\ell $ groups share many properties with right-angled Artin pro-$\ell $-groups or even discrete RAAG's, for example, if $\Gamma $ is a specially oriented chordal graph, then $G_{\Gamma ,\lambda }$ is coherent generalizing a result of C. Droms. Moreover, in this case, $(G_{\Gamma ,\lambda },\theta _{\Gamma ,\lambda })$ has the Positselski-Bogomolov property generalizing a result of H. Servatius, C. Droms, and B. Servatius for discrete RAAG's. If $\Gamma $ is a specially oriented chordal graph and $\operatorname{Im}(\lambda )\subseteq 1+4{\mathbb{Z}}_{2}$ in case that $\ell =2$, then $H<^>{\bullet }(G_{\Gamma ,\lambda },{\mathbb{F}}_{\ell }) \simeq \Lambda <^>{\bullet }(\ddot{\Gamma }<^>{\textrm{op}})$ generalizing a well-known result of M. Salvetti (cf. []). Dedicated to the memory of Avinoam Mann.
引用
收藏
页码:6790 / 6819
页数:30
相关论文
共 47 条
[1]   Right Angled Artin Groups and partial commutation, old and new [J].
Bartholdi, Laurent ;
Haerer, Henrika ;
Schick, Thomas .
ENSEIGNEMENT MATHEMATIQUE, 2020, 66 (1-2) :33-61
[2]   Detecting pro-p-groups that are not absolute Galois groups [J].
Benson, Dave ;
Lemire, Nicole ;
Minac, Jan .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 :175-191
[3]  
Blair Jean RS, 1993, IMA Vol. Math. Appl., P1, DOI [DOI 10.1007/978-1-4613-8369-7_1, DOI 10.1007/978-1-4613-8369-71]
[4]  
Blumer S., 2020, THESIS U MILANO BICO
[5]   Right-angled Artin groups and enhanced Koszul properties [J].
Cassella, Alberto ;
Quadrelli, Claudio .
JOURNAL OF GROUP THEORY, 2021, 24 (01) :17-38
[6]   Quotients of absolute Galois groups which determine the entire Galois cohomology [J].
Chebolu, Sunil K. ;
Efrat, Ido ;
Minac, Jan .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :205-221
[7]  
De Clercq C., 2017, ARXIV
[8]  
Diestel R., 2005, Graph Theory, V173, DOI [10.1007/978-3-662-53622-3, 10.1007/978-3-662-53622-3_7]
[9]  
Dixon J.D., 1999, Analytic pro-p groups
[10]   GRAPH GROUPS, COHERENCE, AND 3-MANIFOLDS [J].
DROMS, C .
JOURNAL OF ALGEBRA, 1987, 106 (02) :484-489