Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells

被引:17
作者
Abidin, Nurul Aliyah Zainal [1 ]
Arith, Faiz [1 ]
Noorasid, N. Syamimi [1 ]
Sarkawi, Hafez [2 ]
Mustafa, A. Nizamuddin [2 ,3 ]
Safie, N. E. [2 ]
Shah, A. S. Mohd [4 ]
Azam, M. A. [5 ,6 ]
Chelvanathan, Puvaneswaran [7 ]
Amin, Nowshad [8 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Elect & Comp Engn, Hang Tuah Jaya 76100, Durian Tunggal, Malaysia
[2] Univ Teknikal Malaysia Melaka, Fac Elect & Elect Engn Technol, Durian Tunggal 76100, Melaka, Malaysia
[3] Imperial Coll London, Fac Engn, Dept Mat, London SW7 2AZ, England
[4] Univ Malaysia Pahang, Coll Engn, Dept Elect Engn, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia
[5] Univ Teknikal Malaysia Melaka, Fac Mfg Engn, Durian Tunggal, Melaka, Malaysia
[6] Shibaura Inst Technol, Ctr Promot Educ Innovat, 3-7-5 Toyosu,Koto Ku, Tokyo 1358548, Japan
[7] Natl Univ Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[8] Univ Sci & Technol Chittagong USTC, Dept Elect & Elect Engn, Foys Lake 4202, Chittagong, Bangladesh
关键词
LA-DOPED ZNO; OXIDE THIN-FILM; ZINC-OXIDE; PHOTOVOLTAIC PERFORMANCE; CONTROLLABLE SYNTHESIS; HIGHLY EFFICIENT; TIO2; HETEROJUNCTION; BASNO3; NANOPARTICLES;
D O I
10.1039/d3ra04823c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional electron transport layer (ETL) TiO2 has been widely used in perovskite solar cells (PSCs), which have produced exceptional power conversion efficiencies (PCE), allowing the technology to be highly regarded and propitious. Nevertheless, the recent high demand for energy harvesters in wearable electronics, aerospace, and building integration has led to the need for flexible solar cells. However, the conventional TiO2 ETL layer is less preferred, where a crystallization process at a temperature as high as 450 degrees C is required, which degrades the plastic substrate. Zinc oxide nanorods (ZnO NRs) as a simple and low-cost fabrication material may fulfil the need as an ETL, but they still suffer from low PCE due to atomic defect vacancy. To delve into the issue, several dopants have been reviewed as an additive to passivate or substitute the Zn2+ vacancies, thus enhancing the charge transport mechanism. This work thereby unravels and provides a clear insight into dopant engineering in ZnO NRs ETL for PSC. Dopant engineering of lanthanum (La) on zinc oxide (ZnO) electron transport layer for perovskite solar cell application.
引用
收藏
页码:33797 / 33819
页数:23
相关论文
共 50 条
[41]   Enhancing the Efficiency of Perovskite Solar Cells by Bidirectional Modification of the Perovskite and Electron Transport Layer [J].
Lin, Zhichao ;
Xu, Xiangning ;
Dong, Hongye ;
Song, Qili ;
Duan, Hairui ;
Mu, Cheng .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (01) :1097-1104
[42]   Au Nanoparticle-TiO2 Hybrids for Efficient Electron Transport Layer in Perovskite Solar Cells [J].
Li, Hang ;
Yang, Lijun ;
Yang, Pan ;
Zhao, Xiaochong .
CHEMISTRY LETTERS, 2019, 48 (07) :682-685
[43]   The Effect of Post-Baking Temperature and Thickness of ZnO Electron Transport Layers for Efficient Planar Heterojunction Organometal-Trihalide Perovskite Solar Cells [J].
Lee, Kun-Mu ;
Lin, Chuan-Jung ;
Chang, Yin-Hsuan ;
Lin, Ting-Han ;
Suryanarayanan, Vembu ;
Wu, Ming-Chung .
COATINGS, 2017, 7 (12)
[44]   Amine-passivated ZnO electron transport layer for thermal stability-enhanced perovskite solar cells [J].
Yang, Zilu ;
Fan, Qin ;
Shen, Tao ;
Jin, Junjun ;
Deng, Wenqiu ;
Xin, Juan ;
Huang, Xiulin ;
Wang, Xianbao ;
Li, Jinhua .
SOLAR ENERGY, 2020, 204 :223-230
[45]   Double layer mesoscopic electron contact for efficient perovskite solar cells [J].
Chavan, Rohit D. ;
Yadav, Pankaj ;
Tavakoli, Mohammad Mahdi ;
Prochowicz, Daniel ;
Nimbalkar, Ajaysing ;
Bhoite, Sangram P. ;
Bhosale, Popatrao N. ;
Hong, Chang Kook .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (02) :843-851
[46]   MOF-derived ZnO as electron transport layer for improving light harvesting and electron extraction efficiency in perovskite solar cells [J].
Zhang, Ya-Nan ;
Li, Bo ;
Fu, Lin ;
Li, Qun ;
Yin, Long-Wei .
ELECTROCHIMICA ACTA, 2020, 330
[47]   ZnO nanostructures for efficient perovskite solar cells [J].
Jinxia Duan ;
Qiu Xiong ;
Hao Wang ;
Jun Zhang ;
Jinghua Hu .
Journal of Materials Science: Materials in Electronics, 2017, 28 :60-66
[48]   A Dopant-Free Hole Transporting Layer for Efficient and Stable Planar Perovskite Solar Cells [J].
Tavakoli, Mohammad Mahdi ;
Si Huayan ;
Yadav, Pankaj ;
Prochowicz, Daniel ;
Tavakoli, Rouhollah .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (07)
[49]   Enhanced performance of perovskite solar cells using ZnO electron transport layer prepared under simultaneous UV irradiation and magnetic field [J].
Chalabi, Lougen M. ;
Loucif, Aicha ;
Alanazi, Anwar Q. ;
Alenzi, Sultan M. ;
Albadri, Abdulrahman .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (32)
[50]   Modification Engineering in SnO2Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability [J].
Deng, Kaimo ;
Chen, Qinghua ;
Li, Liang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)