Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells

被引:17
作者
Abidin, Nurul Aliyah Zainal [1 ]
Arith, Faiz [1 ]
Noorasid, N. Syamimi [1 ]
Sarkawi, Hafez [2 ]
Mustafa, A. Nizamuddin [2 ,3 ]
Safie, N. E. [2 ]
Shah, A. S. Mohd [4 ]
Azam, M. A. [5 ,6 ]
Chelvanathan, Puvaneswaran [7 ]
Amin, Nowshad [8 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fac Elect & Comp Engn, Hang Tuah Jaya 76100, Durian Tunggal, Malaysia
[2] Univ Teknikal Malaysia Melaka, Fac Elect & Elect Engn Technol, Durian Tunggal 76100, Melaka, Malaysia
[3] Imperial Coll London, Fac Engn, Dept Mat, London SW7 2AZ, England
[4] Univ Malaysia Pahang, Coll Engn, Dept Elect Engn, Lebuhraya Tun Razak, Kuantan 26300, Pahang, Malaysia
[5] Univ Teknikal Malaysia Melaka, Fac Mfg Engn, Durian Tunggal, Melaka, Malaysia
[6] Shibaura Inst Technol, Ctr Promot Educ Innovat, 3-7-5 Toyosu,Koto Ku, Tokyo 1358548, Japan
[7] Natl Univ Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[8] Univ Sci & Technol Chittagong USTC, Dept Elect & Elect Engn, Foys Lake 4202, Chittagong, Bangladesh
关键词
LA-DOPED ZNO; OXIDE THIN-FILM; ZINC-OXIDE; PHOTOVOLTAIC PERFORMANCE; CONTROLLABLE SYNTHESIS; HIGHLY EFFICIENT; TIO2; HETEROJUNCTION; BASNO3; NANOPARTICLES;
D O I
10.1039/d3ra04823c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional electron transport layer (ETL) TiO2 has been widely used in perovskite solar cells (PSCs), which have produced exceptional power conversion efficiencies (PCE), allowing the technology to be highly regarded and propitious. Nevertheless, the recent high demand for energy harvesters in wearable electronics, aerospace, and building integration has led to the need for flexible solar cells. However, the conventional TiO2 ETL layer is less preferred, where a crystallization process at a temperature as high as 450 degrees C is required, which degrades the plastic substrate. Zinc oxide nanorods (ZnO NRs) as a simple and low-cost fabrication material may fulfil the need as an ETL, but they still suffer from low PCE due to atomic defect vacancy. To delve into the issue, several dopants have been reviewed as an additive to passivate or substitute the Zn2+ vacancies, thus enhancing the charge transport mechanism. This work thereby unravels and provides a clear insight into dopant engineering in ZnO NRs ETL for PSC. Dopant engineering of lanthanum (La) on zinc oxide (ZnO) electron transport layer for perovskite solar cell application.
引用
收藏
页码:33797 / 33819
页数:23
相关论文
共 50 条
  • [21] A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination
    Xie, Jiangsheng
    Arivazhagan, V.
    Xiao, Ke
    Yan, Keyou
    Yang, Zhengrui
    Qiang, Yaping
    Hang, Pengjie
    Li, Ge
    Cui, Can
    Yu, Xuegong
    Yang, Deren
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5566 - 5573
  • [22] Research progress in electron transport layer in perovskite solar cells
    Mao, Gong-Ping
    Wang, Wei
    Shao, Sen
    Sun, Xiao-Jun
    Chen, Shi-An
    Li, Min-Hao
    Li, Hua-Ming
    RARE METALS, 2018, 37 (02) : 95 - 106
  • [23] Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells
    Liu, Hao-Ran
    Li, Shu-Hui
    Deng, Lin-Long
    Wang, Ze-Yu
    Xing, Zhou
    Rong, Xian
    Tian, Han-Rui
    Li, Xin
    Xie, Su-Yuan
    Huang, Rong-Bin
    Zheng, Lan-Sun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (27) : 23982 - 23989
  • [24] Fast and low temperature processed CsPbI 3 perovskite solar cells with ZnO as electron transport layer
    Deng, Wenqiu
    Li, Jinhua
    Jin, Junjun
    Mishra, Debesh Devadutta
    Xin, Juan
    Lin, Liangyou
    Guo, Songyang
    Xiao, Bichen
    Wilson, Gregory J.
    Wang, Xianbao
    JOURNAL OF POWER SOURCES, 2020, 480
  • [25] Alternative Electron Transport Layer Based on Al-Doped ZnO and SnO2 for Perovskite Solar Cells: Impact on Microstructure and Stability
    Spalla, Manon
    Planes, Emilie
    Perrin, Lara
    Matheron, Muriel
    Berson, Solenn
    Flandin, Lionel
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (10) : 7183 - 7195
  • [26] Graded energy band engineering for efficient perovskite solar cells
    Cao, Fengren
    Wang, Meng
    Li, Liang
    NANO SELECT, 2020, 1 (02): : 152 - 168
  • [27] Magnesium doped TiO2 as an efficient electron transport layer in perovskite solar cells
    Arshad, Zafar
    Khoja, Asif Hussain
    Shakir, Sehar
    Afzal, Asif
    Mujtaba, M. A.
    Soudagar, Manzoore Elahi M.
    Fayaz, H.
    Saleel, C. Ahamed
    Farukh, Sarah
    Saeed, Mudassar
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 26
  • [28] Metal Oxide Compact Electron Transport Layer Modification for Efficient and Stable Perovskite Solar Cells
    Shahiduzzaman, Md.
    Fukaya, Shoko
    Muslih, Ersan Y.
    Wang, Liangle
    Nakano, Masahiro
    Akhtaruzzaman, Md.
    Karakawa, Makoto
    Takahashi, Kohshin
    Nunzi, Jean-Michel
    Taima, Tetsuya
    MATERIALS, 2020, 13 (09)
  • [29] Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells
    Furasova, Aleksandra
    Voroshilov, Pavel
    Baranov, Mikhail
    Tonkaev, Pavel
    Nikolaeva, Anna
    Voronin, Kirill
    Vesce, Luigi
    Makarov, Sergey
    Di Carlo, Aldo
    NANO ENERGY, 2021, 89
  • [30] Hydrophobic PbS QDs layer decorated ZnO electron transport layer to boost photovoltaic performance of perovskite solar cells
    Pang, Zhenyu
    Yang, Shuo
    Sun, Yansen
    He, Li
    Wang, Fengyou
    Fan, Lin
    Chi, Shaohua
    Sun, Xiaoxu
    Yang, Lili
    Yang, Jinghai
    CHEMICAL ENGINEERING JOURNAL, 2022, 439