Glioma synapses recruit mechanisms of adaptive plasticity

被引:1
|
作者
Taylor, Kathryn R. [1 ]
Barron, Tara [1 ]
Hui, Alexa [1 ]
Spitzer, Avishay [2 ]
Yalcin, Belgin [1 ]
Ivec, Alexis E. [1 ]
Geraghty, Anna C. [1 ]
Hartmann, Griffin G. [1 ]
Arzt, Marlene [1 ]
Gillespie, Shawn M. [1 ]
Kim, Yoon Seok [1 ]
Jahan, Samin Maleki [1 ]
Zhang, Helena [1 ]
Shamardani, Kiarash [1 ]
Su, Minhui [1 ]
Ni, Lijun [1 ]
Du, Peter P. [1 ]
Woo, Pamelyn J. [1 ]
Silva-Torres, Arianna [1 ]
Venkatesh, Humsa S. [1 ]
Mancusi, Rebecca [1 ]
Ponnuswami, Anitha [1 ]
Mulinyawe, Sara [1 ]
Keough, Michael B. [1 ]
Chau, Isabelle [1 ]
Aziz-Bose, Razina [1 ]
Tirosh, Itay [2 ]
Suva, Mario L. [3 ,4 ,5 ,6 ]
Monje, Michelle [1 ,7 ,8 ,9 ,10 ]
机构
[1] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA
[2] Weizmann Inst Sci, Dept Mol Cell Biol, Rehovot, Israel
[3] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Ctr Canc Res, Boston, MA 02114 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Boston, MA USA
[7] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Pathol, Stanford, CA 94305 USA
[9] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA
[10] Stanford Calif, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
Astronomy and astrophysics; LONG-TERM POTENTIATION; AMPA RECEPTOR TRAFFICKING; POSITIVE SOLID TUMORS; SYNAPTIC-TRANSMISSION; NEUROTROPHIC FACTOR; GLUTAMATE RECEPTORS; EXPRESSION; LTP; TRKB; CELL;
D O I
10.1038/d41586-023-03275-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors(4,5). The consequent glioma cell membrane depolarization drives tumour proliferation(4,6). In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity(7,8) and strength(9-15). Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B-16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity(17-22) that contributes to memory and learning in the healthy brain(23-26). BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.
引用
收藏
页码:366 / +
页数:33
相关论文
共 50 条
  • [1] Differential mechanisms of transmission and plasticity at mossy fiber synapses
    McBain, Chris J.
    ESSENCE OF MEMORY, 2008, 169 : 225 - 240
  • [2] Mechanisms of long-term plasticity of hippocampal GABAergic synapses
    Rozov, A. V.
    Valiullina, F. F.
    Bolshakov, A. P.
    BIOCHEMISTRY-MOSCOW, 2017, 82 (03) : 257 - 263
  • [3] BDNF Controls Bidirectional Endocannabinoid Plasticity at Corticostriatal Synapses
    Gangarossa, Giuseppe
    Perez, Sylvie
    Dembitskaya, Yulia
    Prokin, Ilya
    Berry, Hugues
    Venance, Laurent
    CEREBRAL CORTEX, 2020, 30 (01) : 197 - 214
  • [4] Inhibitory Plasticity Dictates the Sign of Plasticity at Excitatory Synapses
    Wang, Lang
    Maffei, Arianna
    JOURNAL OF NEUROSCIENCE, 2014, 34 (04): : 1083 - 1093
  • [5] BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses
    Gottmann, Kurt
    Mittmann, Thomas
    Lessmann, Volkmar
    EXPERIMENTAL BRAIN RESEARCH, 2009, 199 (3-4) : 203 - 234
  • [6] Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses
    Zhuang, Xiaowen
    Wong, Nicole F.
    Sun, Wei
    Xu-Friedman, Matthew A.
    JOURNAL OF NEUROSCIENCE, 2020, 40 (36): : 6896 - 6909
  • [7] Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses
    Verhoog, Matthijs B.
    Goriounova, Natalia A.
    Obermayer, Joshua
    Stroeder, Jasper
    Hjorth, J. J. Johannes
    Testa-Silva, Guilherme
    Baayen, Johannes C.
    de Kock, Christiaan P. J.
    Meredith, Rhiannon M.
    Mansvelder, Huibert D.
    JOURNAL OF NEUROSCIENCE, 2013, 33 (43): : 17197 - 17208
  • [8] Persistent but Labile Synaptic Plasticity at Excitatory Synapses
    Pradier, Bruno
    Lanning, Katherine
    Taljan, Katherine T.
    Feuille, Colin J.
    Nagy, M. Aurel
    Kauer, Julie A.
    JOURNAL OF NEUROSCIENCE, 2018, 38 (25): : 5750 - 5758
  • [9] Extracellular Metalloproteinases in the Plasticity of Excitatory and Inhibitory Synapses
    Wiera, Grzegorz
    Mozrzymas, Jerzy W.
    CELLS, 2021, 10 (08)
  • [10] Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses
    Dias, Raquel B.
    Rodrigues, Tiago M.
    Rombo, Diogo M.
    Ribeiro, Filipa F.
    Rodrigues, Joana
    McGarvey, Jennifer
    Orcinha, Catarina
    Henley, Jeremy M.
    Sebastiao, Ana M.
    CEREBRAL CORTEX, 2018, 28 (08) : 2795 - 2809