The existence of solutions for parabolic problem with the limiting case of double phase flux

被引:1
作者
Yuan, Wen-Shuo [1 ]
Ge, Bin [1 ]
Cao, Qing-Hai [1 ]
Zhang, Yu [1 ]
机构
[1] Harbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 06期
关键词
Double-phase problem; Global existence; Parabolic equations; Functions of bounded variation; Galerkin methods; Musielak-Orlicz Sobolev spaces; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; FUNCTIONALS; REGULARITY; MINIMIZERS; GROWTH;
D O I
10.1007/s00033-023-02109-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we are concerned with the existence result to a class of nonlinear parabolic equations driven by the so-called double phase operator in the limiting case with initial boundary value. Under the framework of Musielak-Orlicz Sobolev spaces, we established energy estimates. And by passing the limit of a sequence of solutions of double-phase problems whose highest exponent approximates 1, we obtain that the desired result is a bounded variation solution.
引用
收藏
页数:17
相关论文
共 50 条
[31]   Parabolic double phase obstacle problems [J].
Carl, Siegfried ;
Winkert, Patrick .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
[32]   Existence of weak solutions to a certain homogeneous parabolic Neumann problem involving variable exponents and cross-diffusion [J].
Arumugam, Gurusamy ;
Erhardt, Andre H. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) :685-709
[33]   Existence and Uniqueness of Renormalized Solutions for a Nonlinear p(x)-Parabolic Problem With Lower Order Term and General Data [J].
Sabiry, Abdelaziz ;
Zineddaine, Ghizlane ;
Kassidi, Abderrazak ;
Melliani, Said .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (08) :8669-8686
[34]   Existence of solutions for double-phase problems by topological degree [J].
Wang, Bin-Sheng ;
Hou, Gang-Ling ;
Ge, Bin .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (01)
[35]   Existence of infinitely many solutions for double phase problem with sign-changing potential [J].
Bin Ge ;
Zhi-Yuan Chen .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :3185-3196
[36]   Existence of weak solutions to borderline double-phase problems with logarithmic convection terms [J].
Tran, Minh-Phuong ;
Nguyen, Thanh-Nhan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
[37]   Global Well-Posedness of Solutions to a Class of Double Phase Parabolic Equation With Variable Exponents [J].
Wen-Shuo Yuan ;
Bin Ge ;
Qing-Hai Cao .
Potential Analysis, 2024, 60 :1007-1030
[38]   Nonlinear obstacle problems with double phase in the borderline case [J].
Byun, Sun-Sig ;
Cho, Yumi ;
Oh, Jehan .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) :651-669
[39]   Existence of periodic solution for double-phase parabolic problems with strongly nonlinear source [J].
Jourhmane, Hamza ;
Kassidi, Abderrazak ;
Hilal, Khalid ;
Elomari, M'hamed .
FILOMAT, 2023, 37 (27) :9357-9370
[40]   Existence results for double phase obstacle problems with variable exponents [J].
Benslimane, Omar ;
Aberqi, Ahmed ;
Bennouna, Jaouad .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) :875-890