The existence of solutions for parabolic problem with the limiting case of double phase flux

被引:1
作者
Yuan, Wen-Shuo [1 ]
Ge, Bin [1 ]
Cao, Qing-Hai [1 ]
Zhang, Yu [1 ]
机构
[1] Harbin Engn Univ, Sch Math Sci, Harbin 150001, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 06期
关键词
Double-phase problem; Global existence; Parabolic equations; Functions of bounded variation; Galerkin methods; Musielak-Orlicz Sobolev spaces; ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; FUNCTIONALS; REGULARITY; MINIMIZERS; GROWTH;
D O I
10.1007/s00033-023-02109-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we are concerned with the existence result to a class of nonlinear parabolic equations driven by the so-called double phase operator in the limiting case with initial boundary value. Under the framework of Musielak-Orlicz Sobolev spaces, we established energy estimates. And by passing the limit of a sequence of solutions of double-phase problems whose highest exponent approximates 1, we obtain that the desired result is a bounded variation solution.
引用
收藏
页数:17
相关论文
共 50 条
[21]   EXISTENCE OF WEAK SOLUTIONS FOR A DOUBLE PHASE VARIABLE EXPONENT PROBLEM WITH A GRADIENT DEPENDENT REACTION TERM [J].
El Ouaarabi, Mohamed ;
Allalou, Chakir ;
Melliani, Said .
MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) :965-979
[22]   The weak solutions of a nonlinear parabolic equation from two-phase problem [J].
Huang, Zhisheng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[23]   Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent [J].
Kim, In Hyoun ;
Kim, Yun-Ho ;
Oh, Min Wook ;
Zeng, Shengda .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[24]   Existence of infinitelymany solutions for double phase problem with sign-changing potential [J].
Ge, Bin ;
Chen, Zhi-Yuan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) :3185-3196
[25]   Existence of weak solutions for Kirchhoff type double-phase problem in RN [J].
Arora, Anupma ;
Dwivedi, Gaurav .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) :4734-4755
[26]   Existence of solutions for resonant double phase problems with mixed boundary value conditions [J].
Yang, Yihao ;
Liu, Wulong ;
Winkert, Patrick ;
Yan, Xingye .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (03)
[27]   Existence of solutions for singular double phase problems via the Nehari manifold method [J].
Liu, Wulong ;
Dai, Guowei ;
Papageorgiou, Nikolaos S. ;
Winkert, Patrick .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
[28]   Existence of Solutions for a Singular Double Phase Problem Involving a ?-Hilfer Fractional Operator Via Nehari Manifold [J].
da C. Sousa, J. Vanterler ;
Lima, Karla B. B. ;
Tavares, Leandro S. S. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (03)
[29]   Weak Solutions for Double Phase Problem Driven by the (p(x), q(x))-Laplacian Operator Under Dirichlet Boundary Conditions [J].
El Ouaarabi, Mohamed ;
Allalou, Chakir ;
Melliani, Said .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 :19-19
[30]   Finite element solutions for variable exponents double phase problems [J].
El Yazidi, Youness ;
Charkaoui, Abderrahim ;
Zeng, Shengda .
NUMERICAL ALGORITHMS, 2025,